
Machine Learning (NTU, Fall 2012) instructor: Hsuan-Tien Lin

Homework #7
RELEASE DATE: 12/13/2012

DUE DATE: 12/27/2012, BEFORE THE END OF CLASS

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines on
the course website and upload your source code to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

7.1 Power of Neural Networks

In this problem, we will work with Neural Networks using sign(·) instead of tanh(·) as the activation
functions. In addition, we will take +1 to mean logic TRUE, and −1 to mean logic FALSE. The Caltech
lecture (HW 6.5) briefly mentioned that Neural Networks can implement any Boolean function.

(1) (10%) Show a neural network that implements

AND

(
(x)1, NOT

(
(x)2

)
, OR

(
(x)3, (x)4, NOT

(
x)1

)))
.

(2) (10%) Show a 3-4-1 neural network that implements XOR
(
(x)1, (x)2, (x)3

)
.

(3) (10%) Show a 3-3-1 neural network that implements XOR
(
(x)1, (x)2, (x)3

)
.

7.2 Neural Network Training

(1) (10%) For a neural network with at least one hidden layer and tanh(·) as the activation functions
on all the non-input nodes, what is the gradient (with respect to the weights) when all the weights
are set to zero?

7.3 Kernel from Decision Stumps

When talking about non-uniform voting in aggregation, we mentioned that α can be viewed as a weight
vector learned from any linear algorithm coupled with the following transform:

φ(x) =
(
h1(x), h2(x), · · · , hT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut for the
inner product φ(x)Tφ(x′). In this problem, we mix the two topics together using the decision stumps
as our h(x).

1 of 4

Machine Learning (NTU, Fall 2012) instructor: Hsuan-Tien Lin

(1) (10%) Assume that the input vectors contain only integers between (including) −B and B.

hs,i,θ(x) = sign
(
s · x[i]− θ

)
.

Two decision stumps h(1) and h(2) are defined as the same if h(1)(x) = h(2)(x) for every x ∈ X .
Two decision stumps are different if they are not the same. Argue that there are only finitely-many
different decision stumps for X and list all of them for the case of d = 2 and B = 4.

(2) (10%) Let H = { all different decision stumps for X }. Since H is finite, we can enumerate each
hypothesis h ∈ H by some index t. Define

φds(x) =

(
h1(x), h2(x), · · · , ht(x), · · · , h|H|(x)

)
.

Derive a simple equation that evaluates Kds(x,x
′) = φds(x)Tφds(x

′) efficiently.

The result can be easily extended to the case when X is an arbitrary box in Rd as well.

7.4 Power of Adaptive Boosting

The adaptive boosting (AdaBoost) algorithm, as shown in the class slides, is as follows:

• For input D = {(xn, yn)}Nn=1, set un = 1
N for all n.

• For t = 1, 2, · · · , T ,

– Learn a simple hypothesis ht such that ht solves

ht = argmin
h∈H

N∑
n=1

un · Jyn 6= h(xn)K .

with the help of some base learner Ab that learns from h ∈ H.

– Compute the weighted error εt =

∑N
n=1 un · Jyn 6= ht(xn)K∑N

n=1 un
and the confidence

αt =
1

2
ln

1− εt
εt

– Change the example weights: un = un · exp
(
−αtynht(xn)

)
.

• Output: combined function H(x) = sign

(
T∑
t=1

αtht(x)

)
In this problem, we will prove that AdaBoost can reach Ein(H) = 0 if T is large enough and every

hypothesis ht satisfies εt ≤ ε < 1
2 .

(1) (10%) Let U (t−1) =

N∑
n=1

un at the beginning of the t-th iteration. According to the AdaBoost

algorithm above, for t ≥ 1, prove that

U (t) =
1

N

N∑
n=1

exp

(
−yn

t∑
τ=1

ατhτ (xn)

)
.

(2) (10%) By the result in (1), prove that Ein(H) ≤ U (T).

(3) (10%) According to the AdaBoost algorithm above, for t ≥ 1, prove that U (t) = U (t−1) ·
2
√
εt(1− εt).

2 of 4

Machine Learning (NTU, Fall 2012) instructor: Hsuan-Tien Lin

(4) (10%) Using 0 ≤ εt ≤ ε < 1
2 , for t ≥ 1, prove that

√
εt(1− εt) ≤

√
ε(1− ε).

(5) (10%) Using ε < 1
2 , prove that

√
ε(1− ε) ≤ 1

2 exp
(
−2(1

2 − ε)
2
)
.

(6) (10%) Using the results above, prove that U (T) ≤ exp
(
−2T (1

2 − ε)
2
)
.

(7) (10%) Using the results above, argue that after T = O(logN) iterations, Ein(H) = 0.

7.5 Optimization View of Adaptive Boosting

Assume that H = {h`}L`=1 is a finite set of hypotheses. Consider an error function for an ensemble H(x)

of the form sign
(∑L

`=1 β`h`(x)
)

:

Eexp(H) =
1

N

N∑
n=1

exp

(
−yn

L∑
`=1

β`h`(xn)

)
.

Using your results in Problem 7.4(2), we can easily show that Eexp(H) is an upper bound of Ein(H).
We now prove that AdaBoost is equivalent to a particular way of minimizing Eexp(H).

(1) (10%) Assume that we hope to update from βold to βnew by changing only component i of βold.
That is, for a given vector βold = (βold1 , βold2 , · · · , βoldL−1, β

old
L), we want to set

βnewi = βoldi + ∆i.

such that

∆i = argmin
∆

1

N

N∑
n=1

exp

(
−yn

(
L∑
`=1

βold` h`(xn)

)
− yn

(
∆ · hi(xn)

))
.

Let un = 1
N exp

(
−yn

∑L
`=1 β

old
` h`(xn)

)
and εi =

∑N
n=1 un·Jyn 6=hi(xn)K∑N

n=1 un
. What is the optimal ∆i in

terms of εi?

(The result shows that the αt in AdaBoost is the steepest descent choice for Eexp after getting ht.)

(2) (10%) Suppose now that we want to pick the best i that greedily makes Eexp(H) the smallest.
That is, for a given vector (β1, β2, · · · , βL−1, βL), we want to solve

min
∆,i

1

N

N∑
n=1

exp

(
−yn

(
L∑
`=1

βold` h`(xn)

)
− yn

(
∆ · hi(xn)

))
.

If all h ∈ H satisfies ∑N
n=1 un · Jyn 6= h(xn)K∑N

n=1 un
≤ 1

2
,

show that the optimal

hi = argmin
h∈H

N∑
n=1

un · Jyn 6= h(xn)K .

(The result shows that the ht in AdaBoost is the optimal coordinate choice for Eexp.)

All the results can be extended to the case when H is of an infinite size as well. This problem shows that
AdaBoost is optimizing a particular error function Eexp slowly (by coordinate).

3 of 4

Machine Learning (NTU, Fall 2012) instructor: Hsuan-Tien Lin

7.6 Experiments with Adaptive Boosting (*)

(1) (50%) Implement the AdaBoost algorithm with decision stumps (i.e., use Ads as Ab). Run the
algorithm on the following set for training:

http://www.csie.ntu.edu.tw/~htlin/course/ml12fall/hw7/hw7_train.dat

and the following set for testing:

http://www.csie.ntu.edu.tw/~htlin/course/ml12fall/hw7/hw7_test.dat

Use a total of T = 500 iterations. Let Ht(x) = sign

(
t∑

τ=1

ατhτ (x)

)
. Plot Ein(Ht), Eout(Ht)

and U (t) (see the definition above) as functions of t on the same figure. Briefly state your findings.

7.7 Neural Networks for XOR

(1) (Bonus 10%) Following the assumptions in Problem 7.1, show a d-d-1 neural network that imple-
ments XOR

(
(x)1, (x)2, (x)3, . . . , (x)d

)
.

4 of 4

