Machine Learning (NTU, Fall 2012) instructor: Hsuan-Tien Lin

Homework #6
RELEASE DATE: 11/29/2012

DUE DATE: 12/13/2012, BEFORE THE END OF CLASS
QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems. For problems marked with (*), please follow the guidelines on
the course website and upload your source code to designated places.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English with the common math notations introduced in class or in the
problems. We do not accept solutions written in any other languages.

6.1 Transforms: Explicit versus Implicit
Consider the following training set:
x1 = (1,0),y1 = —1 x2 = (0,1),50 = —1 x3 = (0,—-1),y3 = —1
x4=(-1,0),ya =41  x5=10(0,2),y5 =+1  x6=(0,-2),96 = +1
x7 = (—2,0),y7 = +1

(1) Use following nonlinear transformation of the input vector x to the transformed vector z =

(¢1(x), d2(x)):
$1(x) = (x[2])* —2x[1] =1 ¢a(x) = (x[1])* — 2x[2] + 4

(a) (10%) Write down the equation of the optimal separating “hyperplane” in the Z space.
Then, plot the transformed training points in the Z space as well as the boundary between
the +1 and —1 regions, and mark the on-the-boundary vectors (the potential support vectors).

(b) (10%) Write down the equation of the corresponding nonlinear curve in the X" space. Then,
plot the original training points on the X plane as well as the boundary between the +1
and —1 regions, and mark the on-the-boundary vectors (the potential support vectors).

(2) Consider the same training set, but instead of explicitly transforming the input space X, apply the
(hard-margin) SVM algorithm with the kernel function

K(x,x) = (34x"x)2,
which corresponds to a second-order polynomial transformation.

(a) (10%) Set up the optimization problem using (a1, --- ,a7) and numerically solve for them
(you can use any package you want). What is the optimal a?

(b) (10%) Write down the equation of the corresponding nonlinear curve in the X’ space. Then,
plot the original training points on the X plane as well as the boundary between the +1
and —1 regions, and mark the on-the-boundary vectors (the potential support vectors).

(3) (10%) Should the two nonlinear curves (and potential support vectors) found in (1) and (2) be
the same? Why or why not? Make a comparison and briefly describe your findings.
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6.2 A Leave-One-Out Bound of Support Vector Machine

Consider the soft-margin SVM

(D) mln EN ; Z Z U O YnYm K Xnaxm Z Qp

n=1m=1 n=1
N

subject to Z YnOy =0

n=1

0<a,<C

and a soft-margin SVM without the N-th example

N—1N-—
(D—N) IIlgIl En_ 1 = % Z Z 10 B Y Ym K (Xnaxm) - Z Bn

n=1 m=1 n=1
N-1

subject to Z YnBn =0

n=1

0<fn<C
(1) (10%) Assume that a* is an optimal solution for (D) with a% = 0. Let 8 = (of,03,...,a_1)-
Argue that 3 is a feasible vector for (D_y). That is, check that 3 satisfies all constraints of (D_y ).

(2) (10%) Assume that 3" is an optimal solution for (D_y). That is, En—1(8) > En_1(8") for all
feasible vectors (3. Prove that the (3 above satisfies

En_1(B) = Ex1(8).
In other words, 3 is also optimal for (D_y).

(3) (10%) Recall that #SV = (# of nonzero ). With the results in (1) and (2), prove that the
leave-one-out cross-validation error of SVM is upper bounded by the percentage of support vectors.
You can use the fact that

of =0= yn((w*)Tqb(xn) + b*) > 1.

(4) (10%) Let Dgy = {(Xn,yn) such that o > 0 for (D)}. Use what you have done in (1) and (2)
to briefly argue that learning an SVM using Dgy is equivalent to learning an SVM using the full D.

6.3 Dual Problem of L1-Loss Soft-Margin Support Vector Ma-
chines with Weights and Relative Margins

In class, we taught the soft-margin support vector machine as follows.

N
I 7
(Pl)rr’llljg 3V W+C;£n
st Yn (WTXn + b) >1-¢,

gn Z O

The support vector machine is a special case of the more general soft-margin formulation below. In
the more general formulation, each example is associated with its own A,,, which represents the desired
(un-normalized) margin instead of 1; each example is also associated with its own C,,, which represents
the rate of paying its penalty. The formulation is

N
(P) min leW + Z Cnén

wbé 2
st. yn (WTXn + b) > Ay —&n (a)
£ >0 (0).
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In this problem, we derive the dual of the formulation.

(1) (10%) Let a, be the Lagrange multipliers for the n-th constraint of (a), and ~,, be the Lagrange
multiplier for the n-th constraint of (b). Following the derivation of the dual SVM in class, write
down (P) as an equivalent optimization problem

(g&i) ané%ja’y}izo ‘C((baw7£)7 (a77))

What is £((b,w, &), (a,7))?

(2) (10%) Using (assuming) strong duality, the solution to (P) would be the same as the Lagrange
dual problem

i L((b .
B0 iy A0 )

Use the KKT conditions to simplify the Lagrange dual problem, and obtain a dual problem that
involves only a,.

6.4 Operation of Kernels

(1) (10%) Do Exercise 8.12(a) of LED Draft
(2) (10%) Do Exercise 8.12(b) of LFD Draft

(3) (10%) Let Ki(x,x') = ¢1(x)T¢,(x’) be a kernel function with its value within [0,1). Consider
a kernel function K(x,x’) = L Prove that K is a valid kernel by deriving a transform
function ¢(x) such that

1-Kq (x,x’) "

K(x,x') = ¢(x)" $(x).

6.5 Large-Margin Perceptron Classification (*)
(1) (15%) TImplement the perceptron learning algorithm in Problem 1.6. Run the algorithm on the
following data set for training (until Fj, reaches 0):
http://www.csie.ntu.edu.tw/~htlin/course/ml12fall/hw6/hw6_5_train.dat
and the following set for testing

http://www.csie.ntu.edu.tw/~htlin/course/ml112fall/hw6/hw6_5_test.dat

Let g(x) = sign(w”?x + b) with (b, w) coming from PLA. Record the following two items:
e the margin of the hyperplane

e the out-of-sample error F,,; of g

Repeat the experiment over 100 runs. Plot a histogram of the margin and another histogram of
the out-of-sample error. Briefly state your findings.

(2) (15%) Implement the large-margin perceptron (linear hard-margin SVM) formulation below:

. 1
min *WTW
w,b 2

subject to Yo (Wix, +b) >1forn=1,2,...,N.

Run the algorithm on the following data set for training:
http://www.csie.ntu.edu.tw/~htlin/course/ml112fall/hw6/hw6_5_train.dat
and the following set for testing

http://www.csie.ntu.edu.tw/~htlin/course/ml12fall/hw6/hw6_5_test.dat

Let g(x) = sign(wa + b) with (b, w) coming from SVM. Record the following two items:
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e the margin of the hyperplane

e the out-of-sample error F,,; of g

Compare the numbers with the histograms that you get from PLA. Briefly state your findings.

(Note: You can use any general-purpose packages for quadratic programming to solve this problem,
but you cannot use any SVM-specific packages.)

6.6 Experiments with Nonlinear Support Vector Machine (*)

Write a program to implement the nonlinear soft-margin Support Vector Machine by solving

1NN N
min 5 ;;aiajyiyj[((xi,xj) - ;ai
N
s.t. Zyiai =0
i=1

(1) (15%) Use the following set for training:
http://www.csie.ntu.edu.tw/~htlin/course/ml10fall/data/hw6_6_train.dat

Consider the polynomial kernel (1+x7x")¢ with d = 3,6, 9, and C = 0.001, 1,1000. For each (d,C)
combination, show Fi,, E., with 5-fold cross validation, and #—]‘3‘/ (an upper-bound of leave-one-out
cross validation error). Briefly describe your findings.

(2) (15%) Use the following set for training:
http://www.csie.ntu.edu.tw/~htlin/course/ml10fall/data/hw6_6_train.dat

Consider the Gaussian-RBF kernel exp (_”%5“2) with o = 0.125,0.5,2 and C' = 0.001, 1, 1000.

For each (o, C) combination, show Ei,, F., with 5-fold cross validation, and % (an upper-bound
of leave-one-out cross validation error). Briefly describe your findings.

(Note: For this problem, you CAN use any package you want. A recommended choice is LIBSVM
developed by Prof. Chih-Jen Lin in our department)

6.7 Kernel Scaling and Shifting

For a valid kernel K, consider a new kernel

K(x,x') = pK(x,x') + ¢
for some positive p and ¢. It is not difficult to see that K is also a valid kernel.

(1) (Bonus 5%) Argue that for the dual of hard-margin SVM, using K instead of K leads to an
equivalent solution. You need to show the detailed equivalence.

(2) (Bonus 5%) Argue that for the dual of soft-margin SVM, using K along with some new C:' instead
of K with some original C leads to an equivalent solution. What is the relation between C' and C?
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