
Power-Saving Scheduling for Weakly Dynamic
Voltage Scaling Devices?

Jian-Jia Chen1, Tei-Wei Kuo2, and Hsueh-I Lu2

1 Department of Computer Science and Information Engineering
National Taiwan University, Taiwan, Republic of China.

Email:r90079@csie.ntu.edu.tw
2 Department of Computer Science and Information Engineering

Graduate Institute of Networking and Multimedia
National Taiwan University, Taiwan, Republic of China.

Email:{ktw,hil}@csie.ntu.edu.tw

Abstract. We study the problem of non-preemptive scheduling to mini-
mize energy consumption for devices that allow dynamic voltage scaling.
Specifically, consider a device that can process jobs in a non-preemptive
manner. The input consists of (i) the set R of available speeds of the de-
vice, (ii) a set J of jobs, and (iii) a precedence constraint Π among J .
Each job j in J , defined by its arrival time aj , deadline dj , and amount
of computation cj , is supposed to be processed by the device at a speed in
R. Under the assumption that a higher speed means higher energy con-
sumption, the power-saving scheduling problem is to compute a feasible
schedule with speed assignment for the jobs in J such that the required
energy consumption is minimized.
This paper focuses on the setting of weakly dynamic voltage scaling, i.e.,
speed change is not allowed in the middle of processing a job. To demon-
strate that this restriction on many portable power-aware devices intro-
duces hardness to the power-saving scheduling problem, we prove that
the problem is NP-hard even if aj = aj′ and dj = dj′ hold for all j, j′ ∈ J
and |R| = 2. If |R| < ∞, we also give fully polynomial-time approx-
imation schemes for two cases of the general NP-hard problem: (a) all
jobs share a common arrival time, and (b) Π = ∅ and for any j, j′ ∈ J ,
aj ≤ aj′ implies dj ≤ dj′ . To the best of our knowledge, there is no previ-
ously known approximation algorithm for any special case of the NP-hard
problem.

1 Introduction

With the increasing popularity of portable systems, energy efficiency has be-
come a major design issue in hardware and software implementations [4, 9, 16,
21, 22, 27]. Power-aware resource management for portable devices is a criti-
cal design factor since most of them are driven by their own power sources

? Support in parts by research grants from ROC National Science Council NSC-93-2752-
E-002-008-PAE.

(e.g., batteries). Energy-efficient electronic circuit designs, e.g., [1, 34], were
proposed in the past decade, and various vendors have provided processors,
memory chips, storage devices, or even motherboards equipped with the volt-
age scaling technology. For example, the flash-memory chip designed by the
Intel Corp. [12] supports several voltage levels for operations. Because of the
characteristics of many similar storage devices, the supply voltage for an I/O
operation remains unchanged for the entire duration of the operation. Non-
preemptivity in operation scheduling is also the inherent nature of many I/O
devices. Besides, for performance-sensitive devices, the balance between per-
formance and energy consumption must be taken into considerations. We con-
sider power savings on a device capable of supporting several levels of supply
voltages with predictable execution times and energy consumption to process
jobs.

Let XR be a device that processes jobs one at a time in a non-preemptive
manner, where R consists of the available speeds of XR. As restricted for most
portable devices, speed change is not allowed in the middle of processing a
job, e.g., in the flash-memory chip [12]. The energy-consumption rate of XR is
a function φ over R such that the energy required for XR to process a job at
speed r ∈ R for t time units is φ(r) ·t. The rest of the paper makes the physically
reasonable assumption that the function φ(r)/r is monotonically increasing, i.e.,
r > r′ implies φ(r)

r > φ(r′)
r′ .

For any set S, let |S| denote the cardinality of S. All numbers throughout
the paper are rational. Let J consist of jobs 1, 2, . . . , |J | to be processed by XR.
For each j ∈ J , let cj be the time required for XR to process job j at speed 1, let
dj be the deadline for completing job j, and let aj be the arrival time for job j.
If the precedence constraint Π is present on J , a schedule cannot execute job j′

before j when j′ is a successor to j. It is reasonable to assume that dj ≤ dj′ if
j′ is a successor to j. For notational brevity, let d1 ≤ d2 ≤ · · · ≤ d|J|. If dj = dj′

and aj < aj′ , then j < j′. Without loss of generality, we assume minj∈J aj = 0.
A schedule s for J is feasible if each job j ∈ J is assigned a speed sj ∈ R and
processed after aj and before dj without speed change, preemption, or violating
the precedence constraints. We say that s is an earliest-deadline-first schedule for J
(with respect toXR) if each job j ∈ J is processed byXR before jobs j+1, . . . , |J |
as early as possible. It is well known (e.g., [8, §A5.1]) that if the jobs in J have
arbitrary arrival times and deadlines, determining whether the jobs in J can be
scheduled to meet all deadlines is strongly NP-complete even if |R| = 1. The
time required for XR to process job j at speed r ∈ R is assumed being cj/r. The
energy consumption Φ(s) of a schedule s is

∑
j∈J φ(sj)cj/sj . The POWER-SAVING

SCHEDULING problem is to find a feasible schedule s for J with minimum Φ(s).
Clearly, if the energy-consumption rate ofXR is linear, which is highly unlikely
in practice, then any schedule for J has the same energy consumption.

Regardless of the property of the energy consumption function, it is not hard
to show that the POWER-SAVING SCHEDULING problem does not admit any
polynomial-time approximation algorithm unless P = NP, when jobs have arbi-
trary arrival times and deadlines. Assuming that there exists a polynomial-time

approximation algorithm K for the POWER-SAVING SCHEDULING problem, al-
gorithm K can be used to solve the following NP-complete 3-PARTITION prob-
lem [8] in polynomial time: Given a setA of 3M elements, a boundB ∈ Z+, and
a size w(a) ∈ Z+ for each a ∈ A, where B/4 < w(a) < B/2 and

∑
a∈A w(a) =

MB, the 3-PARTITION problem is to find a partition of A into M disjoint sets
A1, A2, · · · , AM such that

∑
a∈Aj

w(a) = B for 1 ≤ j ≤ M . For each element
a ∈ A, a unique job j is created by setting aj = 0, dj = (M + 1)B − 1, and
cj = s|R| · w(a). Another job set J ′ is also constructed by creating M − 1 jobs,
where aj = (j + 1)B − 1, dj = (j + 1)B, and cj = s|R| for the j-th job in J ′.
It is clear that there exists a feasible schedule for the resulting job set above if
and only if there exists a partition for the 3-PARTITION problem. Since K is a
polynomial-time approximation algorithm the POWER-SAVING SCHEDULING
problem, K can be applied to determine the 3-PARTITION problem in poly-
nomial time by examining the feasibility of the derived schedule of K. This
contradicts the assumption that P 6= NP.

Our contribution We investigate the intractability of the problem. Moreover, we
give a fully polynomial-time approximation scheme for two practically impor-
tant cases: (a) all jobs share a common arrival time, and (b) Π = ∅ and for any
j, j′ ∈ J , aj ≤ aj′ implies dj ≤ dj′ (aj ≤ aj′ if j < j′).

Let basic case stand for the situation that |R| = 2 and that all jobs in J have
a common deadline d and a common arrival time 0. We show that the POWER-
SAVING SCHEDULING problem is NP-complete even for the basic case. The
hardness comes from the dis-allowance of speed change on devices with a finite
set of speeds to select from. Moreover, we give a fully polynomial-time approxi-
mation scheme for the POWER-SAVING SCHEDULING problem when (a) all jobs
share a common arrival time, and (b) Π = ∅ and for any j, j′ ∈ J , aj ≤ aj′

implies dj ≤ dj′ , based upon standard techniques of dynamic programming
and rounding. Specifically, we first show that a special case of the problem can
be solved in pseudopolynomial-time algorithm by a dynamic program. (We
comment that the dynamic programs studied by Chen, Lu, and Tang [5] would
have sufficed if their schedules were not allowed to violate deadlines.) To turn a
pseudopolynomial-time algorithm into a fully polynomial-time approximation
scheme via rounding, we need the following lemma to obtain a good estimate
of the minimum energy consumption.

Lemma 1 (Yao, Demers, and Shenker [35]). Let R be the set of non-negative ra-
tional numbers. Then, given a set of jobs with arbitrary arrival times and deadlines, a
feasible schedule for J onXR allowing preemption with minimum energy consumption
can be solved in O(|J | log2 |J |) time.

Comment: the result stated in Lemma 1 requires that the energy consumption
rate function φ is convex and increasing, which is implied by the global as-
sumption of the present paper that φ(r)/r is monotonically increasing.

Related work In [14], a 3-approximation algorithm is proposed for off-line job
scheduling, when processors have a special state sleep. If a processor has multi-

ple special states beside running, (e.g., idle, sleep, and standby), processors could
consume much less energy while no job is processing. Although special states
provide more flexibility for energy-aware job scheduling, overheads on energy
consumption and time latencies for state transitions must be considered. The
on-line competitive algorithm proposed by Yao, et al. [35] is extended to han-
dle processors with a single sleep state in [14] or multiple special states in [13].

Ishihara and Yasuura [15] show that the minimum energy consumption
problem can be formulated as an integer linear program, when |R| is finite,
speed change is allowed, and all jobs have the same arrival time and dead-
line. They show that there exists an optimal schedule with at most two proces-
sor speeds and at most one job is processed at two different processor speeds.
However the proofs in [15] consider only a specific processor model which is
proposed in [1, 34]. In [3], the results in [15] are extended for any convex func-
tion. Energy-efficient scheduling has been extensively studied in off-line, e.g.,
[10, 19, 26], or on-line, e.g., [17, 23–25, 28–31], fashions. Algorithms considering
time-cost trade-offs on scheduling are proposed in [6, 7, 32, 33].

The results on minimization of energy consumption on processors could
not be applied directly to I/O devices. Generally, processors can process jobs
in a preemptive manner. In contrast, I/O devices might perform operations in
a non-preemptive manner, and no speed change is allowed in the middle of
processing an operation. Chang, Kuo, and Lo [2] propose an adjustment mech-
anism to dynamically adjust the supply voltage for a flash memory to reduce
the energy consumption. The proposed heuristic algorithm is efficient but the
optimality is not proved. Hong, Kirovski, Qu, Potkonjak, and Srivastava [10]
propose a heuristic algorithm for minimization of the energy consumption on
a non-preemptive device, where the supply voltages of the device are available
between two given positive thresholds. Besides, Manzak and Chakrabarti [20]
consider a minimum energy consumption problem on a system equipped with
non-preemptive I/O devices capable of supporting multiple levels of voltages,
where voltage switch introduces overheads in energy and time. On-line algo-
rithms are proposed to minimize the energy consumption for executions of
real-time tasks, provided that there is a given feasible schedule as an input. Al-
though the derived schedules are feasible and power savings were achieved in
the experimental results, the optimality is not shown. To the best of our knowl-
edge, no previous scheduling algorithm to minimize the energy consumption
forXR is known with theoretical analysis of optimality for energy consumption
or power savings.

For the remainder of the paper, define R =
{
r1, r2, . . . , r|R|

}
with r1 < r2 <

· · · < r|R|. The rest of the paper is organized as follows. Section 2 addresses the
basic case. Section 3 shows our approximation scheme. Section 4 concludes this
paper.

2 Basic case

In this section, we show that finding a schedule with minimum energy con-
sumption is NP-complete for the basic case. We then present a fully polynomial-
time approximation scheme for the basic case as a warm-up. For any subset I
of J , let s(I) be the schedule s for J with si = r1 for each i ∈ I and si = r2 for
each i ∈ J − I . Clearly, we have

Φ(s(I)) =
∑
i∈I

φ(r1)ci/r1 +
∑

i∈J−I

φ(r2)ci/r2.

Theorem 1. The POWER-SAVING SCHEDULING problem for XR is NP-complete
even for the basic case.

Proof. It is clear that the POWER-SAVING SCHEDULING problem is in NP. It suf-
fices to show the NP-hardness by a reduction from the following NP-complete
SUBSET SUM problem [8]: Given a number wj for each index j ∈ J and another
arbitrary number w, the problem is to determine whether there is a subset I of
J with

∑
i∈I wi = w.

An instance for the basic case of the POWER-SAVING SCHEDULING problem
is constructed as follows: For each index j ∈ J , we create a job j with cj =
r1r2wj . Let the common deadline d be w(r2 − r1) + r1

∑
j∈J wj . Clearly, the set

J of jobs is feasible. Also, for any subset I of J , we have

Φ(s(I)) = r2φ(r1)
X
i∈I

wi+r1φ(r2)
X

i∈J−I

wi = (r2φ(r1)−r1φ(r2))
X
i∈I

wi+r1φ(r2)
X
j∈J

wj .

(1)
We show that there is a set I ⊆ J with

∑
i∈I wi = w if and only if the set J of jobs

admits a feasible schedule swithΦ(s) = w(r2φ(r1)−r1φ(r2))+r1φ(r2)
∑

j∈J wj .
As for the if-part, let I consist of the jobs i with si = r1, which implies s(I) = s.
By Equation (1) and Φ(s) = w(r2φ(r1) − r1φ(r2)) + r1φ(r2)

∑
j∈J wj , we know

(r2φ(r1) − r1φ(r2))
∑

i∈I wi = w(r2φ(r1) − r1φ(r2)). Since r2φ(r1) < r1φ(r2),
we have

∑
i∈I wi = w. As for the only-if-part, let s = s(I). One can easily

see the feasibility of s by verifying that
∑

i∈I wi = w implies
∑

i∈I ci/r1 +∑
i∈J−I ci/r2 = r2

∑
i∈I wi + r1

∑
i∈J−I wi = d. By

∑
i∈I wi = w and Equa-

tion (1), we have Φ(s) = w(r2φ(r1)− r1φ(r2)) + r1φ(1)
∑

j∈J wj .
Given a number wj for each index j ∈ J and another arbitrary number w,

the MAXIMUM SUBSET SUM problem is to find a subset I of J with
∑

i∈I wi ≤ w
such that

∑
i∈I wi is maximized. For the rest of the section, we show how to

obtain a fully polynomial-time approximation scheme for the basic case of the
POWER-SAVING SCHEDULING problem based upon the following lemma.

Lemma 2 (Ibarra and Kim [11]). The MAXIMUM SUBSET SUM problem admits a
fully polynomial-time 1

(1−δ) -approximation algorithm SUBSET(w1, w2, . . . , w|J|, w, δ)
for any 0 < δ < 1.

Given the algorithm shown in Algorithm 1, we have the following lemma.

Algorithm 1
Input: J, r1, r2, d, ε;
Output: A feasible schedule s with almost minimum energy consumption;
1: let c = r1(r2d−

P
j∈J cj)/(r2 − r1);

2: let I be the subset returned by SUBSET(c1, c2, . . . , c|J|, c, δ), where δ = εr2φ(r1)
r1φ(r2)

;
3: output s(I);

Lemma 3. Algorithm 1 is a (1 + ε)-approximation for the basic case of the POWER-
SAVING SCHEDULING problem for any ε > 0.

Proof. Let I∗ be a subset of J with
∑

i∈I∗ ci ≤ c such that
∑

i∈I∗ ci is maximized.
By the choice of c, one can verify that both s(I) and s(I∗) are feasible schedules
for J . Moreover, s(I∗) is an optimal schedule. We showΦ(s(I)) ≤ (1+ε)Φ(s(I∗))
as follows. By Lemma 2, we have

∑
i∈I ci ≤

∑
i∈I∗ ci ≤

∑
i∈I ci/(1 − δ). It

follows that

Φ(s(I))− Φ(s(I∗)) = φ(r1)(
∑
i∈I

ci −
∑
i∈I∗

ci)/r1 + φ(r2)(
∑
i∈I∗

ci −
∑
i∈I

ci)/r2

≤ φ(r2)(
∑
i∈I∗

ci −
∑
i∈I

ci)/r2 ≤ δ
∑
i∈I∗

φ(r2) · ci/r2

= ε
∑
i∈I∗

φ(r1) · ci/r1 ≤ ε · Φ(s(I∗)).

The lemma is proved.

3 Our approximation scheme

Recall that R =
{
r1, r2, . . . , r|R|

}
, where r1 < r2 < · · · < r|R|. Define

γ = max
2≤i≤|R|

ri−1 · φ(ri)
ri · φ(ri−1)

.

An execution sequence is said to be optimal if any feasible schedule can be
translated into such a sequence without increasing the energy consumption.
Let s∗ be a feasible schedule s for the input job set J with minimum Φ(s). We
propose our approximation scheme based on the following lemma which ig-
nores the precedence constraint Π first.

Lemma 4. Suppose that we are given a schedule ŝ satisfying Φ(s∗) ≤ Φ(ŝ) ≤ γΦ(s∗),
the earliest-deadline-first execution sequence is optimal, and Π = ∅, then it takes
O(|R||J |2(ε−1+log γ)) time andO(ε−1|R||J |2) space to compute a (1+ε)-optimal so-
lution for the POWER-SAVING SCHEDULING problem for any parameter 0 < ε ≤ 1.

Proof. Our approximation scheme is based upon the standard rounding tech-
nique. For each j ∈ J and each r ∈ R, let ψ(j, r) denote the energy con-
sumption φ(r)cj/r required by XR for processing job j at speed r. That is,

Φ(s) =
∑

j∈J ψ(j, sj) for any schedule s. For any positive number q, define

ψq(j, r) =
dq · ψ(j, r)e

q
for any j ∈ J and r ∈ R;

Φq(s) =
∑
j∈J

ψq(j, sj) for any schedule s for J.

Clearly, q · ψq(j, r) is an integer and ψ(j, r) ≤ ψq(j, r) ≤ ψ(j, r) + 1
q holds for

each j ∈ J and r ∈ R. Therefore,

Φ(s) ≤ Φq(s) ≤ Φ(s) +
|J |
q

(2)

holds for any schedule s of J . In other words, Φq(s) is the “rounded-up” energy
consumption, which can be a good estimate for Φ(s) as long as q is sufficiently
large. Finding s∗ is NP-hard, but a feasible schedule sq for J with minimum
Φq(sq) can be computed via the standard technique of dynamic programming
as follows.

For any index j ∈ J and any nonnegative k, let τ(j, k) = ∞ signify that
Φq(s) > k holds for any feasible schedule s for the job subset {1, 2, . . . , j}. If
τ(j, k) 6= ∞, let τ(j, k) be the minimum completion time required by any feasi-
ble schedule s for the job subset {1, 2, . . . , j} with Φq(s) ≤ k/q. For notational
brevity, define

τ(0, k) =
{

0 if k ≥ 0;
∞ otherwise (3)

for any integer k. By the optimality of the earliest-deadline-first execution se-
quence, it is not difficult to verify that the following recurrence relation holds
for any j ∈ J and any positive integer k:

τ(j, k) = min
r∈R

8<:
max(τ(j − 1, k − q · ψq(j, r)), aj) if max(τ(j − 1, k − q · ψq(j, r)), aj)

+cj/r +cj/r ≤ dj ;
∞ otherwise.

(4)
Let kq be the minimum k with τ(|J |, k) < ∞. Clearly, Φq(s) = kq/q. Since each
q · ψq(j, r) is an integer, a feasible schedule sq for J with minimum Φq(sq) can
be obtained by a standard dynamic-programming algorithm, based upon Equa-
tions (3) and (4), in

O(|R||J | · kq) = O(|R||J | · Φq(sq) · q) (5)

time and space. By Equation (2) and the optimality of s∗ (respectively, sq) with
respect to Φ (respectively, Φq), we have

Φ(s∗) ≤ Φ(sq) ≤ Φq(sq) ≤ Φq(s∗) ≤ Φ(s∗) +
|J |
q
. (6)

It remains to determine q. Clearly, we want q to be sufficiently large so that
Φ(sq) can be close enough to Φ(s∗). For example, by ε ≤ 1, we can prove that

q ≥ 2|J |
ε · Φq(sq)

(7)

implies Φ(sq) ≤ (1+ ε) ·Φ(s∗) as follows. By Equation (7) and the last inequality
in Equation (6), we have

|J |
q

≤ ε · Φq(sq)
2

≤ ε · Φ(s∗)
2

+
ε · |J |

2q
.

It follows that
|J |
q

≤ ε · Φ(s∗)
2− ε

≤ ε · Φ(s∗),

which by Equation (6) implies Φ(sq) ≤ (1 + ε) · Φ(s∗).
Of course the immediate problem is that schedule sq depends on the value

of q. That is, we need to know the value of q in order to compute sq, so it seems
difficult to enforce q ≥ 2|J|

ε·Φq(sq) at one shot. Fortunately, we can use the following
trick of “doubling the value of q in each iteration”: Initially, we let q be

q′ =
|J |

ε · Φ(ŝ)
. (8)

In each iteration, we first compute sq. If Equation (7) holds, we output the cur-
rent sq as a (1 + ε)-optimal solution. Otherwise, we double the value of q and
then proceed to the next iteration. Let q′′ be the value of q in the last iteration.

What is the required running time? By Equations (5) and (6) we know that
the first iteration runs in O(|J |2|R|/ε) time and space. Therefore, we focus on
the case that the above procedure runs for more than one iteration. By Equa-
tions (5) and (6), we know that each iteration runs in O(|R||J |(q · Φ(s∗) + |J |))
time and space. Since the value of q is doubled in each iteration, the overall
running time is

O

(
|R||J |

(
q′′ · Φ(s∗) + |J | log

q′′

q′

))
.

Since Equation (7) does not hold in the second-to-last iteration, we have

q′′

2
<

2|J |
ε · Φq′′/2(sq′′/2)

. (9)

Besides, by Equation (6), we know

Φ(s∗) ≤ Φq′′/2(sq′′/2). (10)

Combining Equations (6), (9), and (10), we know q′′ ·Φ(s∗) = O(|J |/ε). By Equa-
tions (9) and (10) we have

q′′ <
4|J |

ε · Φ(s∗)
. (11)

Combining the given relation of Φ(s∗) and Φ(ŝ), Equations (8) and (11), we have

log2

q′′

q′
< log2

4Φ(ŝ)
Φ(s∗)

= O(log γ).

The theorem is proved.
Since log γ is polynomial in the number of bits required to encode the input

r and φ(r) for all r ∈ R, Lemma 4 provides a fully polynomial-time approxima-
tion scheme for the POWER-SAVING SCHEDULING problem when we are given
a schedule ŝ satisfying Φ(s∗) ≤ Φ(ŝ) ≤ Φ(s∗) · γ and the earliest-deadline-first
sequence is known to be optimal, if there are no precedence constraints on J .
Let XR′ be the (imaginary) device with R′ = {r | r1 ≤ r ≤ r|R|} for any energy
consumption function φ′ that coincides with φ at all speeds in R. We need the
following lemma to derive ŝ.

Lemma 5. If preemption is allowed for the POWER-SAVING SCHEDULING problem,
then there exists a polynomial-time algorithm to derive an optimal schedule on XR′ .

Proof. Let s′ be the schedule obtained by applying Lemma 1. That is, job j is
to be executed at speed s′j according to schedule s′. We now transform s′ into s̄
so that s̄ is optimal and feasible on XR′ . We define Jl as {j | s′j ≥ r1}. For each
job j ∈ Jl, s̄ just copies the schedule of j on s′, including the speed setting and
processing time intervals. For each job j ∈ J − Jl, if s′ executes j in the interval
[z1, z2] (there could be more than one interval), then s̄ executes j in the interval

[z1, z1 + s′j(z2−z1)

r1
]. It is clear that only one job in s̄ is processed at one time.

Therefore, s̄ is feasible. We adopt the terminologies used in [35] to prove the

optimality of s̄: g(I) for a time interval I = [z, z′] is defined as g(I) =
P

j∈RI
ci

z′−z ,
where RI is the set of jobs satisfying aj ≥ z and dj ≤ z′. A critical interval
I∗ satisfies g(I∗) ≥ g(I) for any interval I . Theorem 1 in [35] shows that there
exists an optimal schedule S, which executes every job inRI∗ at the speed g(I∗)
completely within I∗ and executes no other jobs during I∗. The algorithm for
achieving Lemma 1 is obtained by computing a sequence of critical intervals
iteratively. Therefore, it is clear that if the input job set J is feasible on XR,
g(I∗) must be no larger than r|R|. We know that s̄ is a feasible schedule on XR′

(allow preemption). Besides, the optimality of Theorem 1 in [35] fails on XR′

only when g(I∗) < r1. However, executing jobs at the speed r1 results in an
optimal solution in this situation. Therefore, s̄ is optimal onXR′ and obtainable
in O(|J | log2 |J |) time if preemption is allowed.

Theorem 2. The POWER-SAVING SCHEDULING problem admits a fully polynomial-
time approximation scheme when (a) all jobs share a common arrival time, and (b)
Π = ∅ and for any j, j′ ∈ J , aj ≤ aj′ implies dj ≤ dj′ .

Proof. We first consider only the timing constraints of J in this paragraph.
Based on Lemma 4, we just have to show that we can derive a schedule ŝ sat-
isfying Φ(s∗) ≤ Φ(ŝ) ≤ Φ(s∗) · γ efficiently and prove the optimality of the
earliest-deadline-first execution sequence for these job sets. The preemptive ear-
liest deadline first rule is defined in [18]: If a job arrives or is completed at time
t, execute an arrived (ready) job with the earliest deadline at time t. Given a
feasible schedule s, it is also feasible to schedule jobs according to the pre-
emptive earliest-deadline-first rule by setting the processing speed of job j as

sj [18] (if preemption is allowed). Since the job sets under considerations sat-
isfy the condition aj ≤ aj′ and dj ≤ dj′ if j′ > j, it is clear that each job in
the resulting schedule following the preemptive earliest-deadline-first rule is
non-preempted. The energy consumption for the resulting schedule remains,
because sj does not be increased or decreased. Therefore, the earliest-deadline-
first sequence is known to be optimal for the POWER-SAVING SCHEDULING
problem. Let s̄ be the resulting schedule from Lemma 5. Let s′ be the schedule
for J defined by letting s′j be the smallest r ∈ R with s̄j ≤ r for each j ∈ J
and schedule jobs according to the earliest-deadline-first execution sequence. It
is clear that Φ(s̄) ≤ Φ(s∗) ≤ Φ(s′) ≤ Φ(s̄) · γ ≤ Φ(s∗) · γ. If Π = ∅, the fully
polynomial-time approximation scheme is obtained by setting ŝ = s′.

In the following, we shall show how to deal with Π (aj = 0 for all j ∈
J). Given an earliest-deadline-first feasible schedule s for J , we claim that we
can transform s into another schedule s′′ in O(|J |2) time such that Φ(s′′) =
Φ(s) and s′′ satisfies the precedence and timing constraints. If this claim stands,
we can transform the derived schedule sq in Lemma 4 (respectively, s′ and s∗

in the previous paragraph) into a feasible schedule without increasing Φ(sq)
(respectively, Φ(s′) and Φ(s∗)). This implies the existence of a fully polynomial-
time approximation scheme. Initially, we let s′′ be s. We consider a job j from
job 2 to |J |. While considering job j, we look backward if there is a successor k
to j is executed before j in s′′ such that the ordered jobs Jkj executed between
k and j are not successors to j. If such a job k exists, the execution sequence
is modified by delaying k to be executed immediately after j finishes. Because
all jobs are ready at time 0, job j and jobs in Jjk complete earlier. Since k is a
successor to j (dk ≥ dj) and all jobs are ready at time 0, the resulting schedule is
feasible while considering jobs j, k, and Jkj . We repeat the previous procedure
until no such a job k exists, and let s′′ be the final schedule. It is clear that s′′

is feasible for the job sets {1, 2, . . . , j} after we perform the above rescheduling
by considering job j. After we consider job |J |, s′′ satisfies the precedence and
timing constraints. The time complexity for the above rescheduling is O(|J |2).

4 Conclusion

This paper targets non-preemptive scheduling for minimization of energy con-
sumption on devices that allow weakly dynamic voltage scaling. The problem
is shown to be NP-hard even if the device has only two speeds and all jobs share
the same arrival time and deadline. Moreover, we provide a fully polynomial-
time approximation scheme of the NP-hard problem for two cases: (a) all jobs
share a common arrival time, and (b) Π = ∅ and for any j, j′ ∈ J , aj ≤ aj′

implies dj ≤ dj′ .
An interesting direction for future research is to extend our approximation

scheme to handle the overheads on voltage/speed switches.

References

1. A. Chandrakasan, S. Sheng, and R. Broderson. Lower-power CMOS digital design.
IEEE Journal of Solid-State Circuit, 27(4):473–484, 1992.

2. L.-P. Chang, T.-W. Kuo, and S.-W. Lo. A dynamic-voltage-adjustment mechanism in
reducing the power consumption of flash memory for portable devices. In Proceed-
ings of IEEE International Conference on Consumer Electronics, pages 218–219, 2001.

3. J.-J. Chen, T.-W. Kuo, and C.-L. Yang. Profit-driven uniprocessor scheduling with
energy and timing constraints. In ACM Symposium on Applied Computing, pages
834–840. ACM Press, 2004.

4. J. Y. Chen, W. B. Jone, J. S. Wang, H.-I. Lu, and T. F. Chen. Segmented bus design for
low-power systems. IEEE Transactions on VLSI Systems, 7(1):25–29, 1999.

5. Z. Chen, Q. Lu, and G. Tang. Single machine scheduling with discretely controllable
processing times. Operations Research Letters, 21(2):69–76, 1997.

6. P. De, J. E. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of the discrete time-cost
tradeoff problem for project networks. Operations Research, 45(2):302–306, 1997.

7. V. G. Deı̌neko and G. J. Woeginger. Hardness of approximation of the discrete time-
cost tradeoff problem. Operations Research Letters, 29(5):207–210, 2001.

8. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W. H. Freeman and Co., 1979.

9. V. Gutnik and A. P. Chandrakasan. Embedded power supply for low-power DSP.
IEEE Transactions on VLSI Systems, 5(4):425–435, 1997.

10. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power optimization
of variable voltage core-based systems. In Proceedings of the 35th Annual Conference
on Design Automation Conference, pages 176–181. ACM Press, 1998.

11. O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and
sum of subsets problems. Journal of the ACM, 22(4):463–468, 1975.

12. Intel Corporation. 28F016S5 5-Volt FlashFile Flash Memory Datasheet, 1999.
13. S. Irani, S. Shukla, and R. Gupta. Competitive analysis of dynamic power manage-

ment strategies for systems with multiple saving states. In Proceedings of the Design
Automation and Test Europe Conference, 2002.

14. S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 37–46.
Society for Industrial and Applied Mathematics, 2003.

15. T. Ishihara and H. Yasuura. Voltage scheduling problems for dynamically variable
voltage processors. In Proceedings of the International Symposium on Low Power Elec-
troncs and Design, pages 197–202, 1998.

16. W.-B. Jone, J. S. Wang, H.-I. Lu, I. P. Hsu, and J.-Y. Chen. Design theory and im-
plementation for low-power segmented bus systems. ACM Transactions on Design
Automation of Electronic Systems, 8(1):38–54, 2003.

17. S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time systems.
In Proceedings of the 37th Conference on Design Automation, pages 806–809. ACM Press,
2000.

18. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

19. A. Manzak and C. Chakrabarti. Variable voltage task scheduling algorithms for
minimizing energy. In Proceedings of the 2001 International Symposium on Low Power
Electronics and Design, pages 279–282. ACM Press, 2001.

20. A. Manzak and C. Chakrabarti. Energy-conscious, deterministic I/O device
scheduling in hard real-time systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 22(7):847–858, 2003.

21. A. Manzak and C. Chakrabarti. Variable voltage task scheduling algorithms for
minimizing energy/power. IEEE Transactions on VLSI Systems, 11(2):270–276, 2003.

22. M. Pedram and J. M. Rabaey. Power Aware Design Methodologies. Kluwer Academic
Publishers, 2002.

23. T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proceedings of the 1998 International Symposium on Low
Power Electronics and Design, pages 76–81. ACM Press, 1998.

24. T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the iparm microprocessor
system. In Proceedings of the 2000 International Symposium on Low Power Electronics and
Design, pages 96–101. ACM Press, 2000.

25. J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for variable
voltage processors. In Proceedings of the 2001 International Symposium on Low Power
Electronics and Design, pages 28–33. ACM Press, 2001.

26. G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time sys-
tems on variable voltage processors. In Proceedings of the 38th Conference on Design
Automation, pages 828–833. ACM Press, 2001.

27. V. Raghunathan, M. B. Srivastava, and R. K. Gupta. A survey of techniques for en-
ergy efficient on-chip communication. In Proceedings of the 40th Conference on Design
Automation, pages 900–905. ACM Press, 2003.

28. D. Shin and J. Kim. A profile-based energy-efficient intra-task voltage scheduling al-
gorithm for real-time applications. In Proceedings of the 2001 International Symposium
on Low Power Electronics and Design, pages 271–274. ACM Press, 2001.

29. D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling using static
timing analysis. In Proceedings of the 38th Conference on Design Automation, pages
438–443. ACM Press, 2001.

30. Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time
systems. In Proceedings of the 36th ACM/IEEE Conference on Design Automation Con-
ference, pages 134–139. ACM Press, 1999.

31. Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded sys-
tems on variable speed processors. In Proceedings of the 2000 IEEE/ACM International
Conference on Computer-Aided Design, pages 365–368. IEEE Press, 2000.

32. M. Skutella. Approximation algorithms for the discrete time-cost tradeoff problem.
In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 501–508. Society for Industrial and Applied Mathematics, 1997.

33. M. Skutella. Approximation algorithms for the discrete time-cost tradeoff problem.
Mathematics of Operations Research, 23(4):909–929, 1998.

34. M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy.
In Proceedings of Symposium on Operating Systems Design and Implementation, pages
13–23, 1994.

35. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages
374–382. IEEE, 1995.

