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Abstract

The best known approximation algorithm for graph MAX

CUT, due to Goemans and Williamson, first finds the

optimal solution a semidefinite program and then de-

rives a graph cut from that solution. Building on this

result, Karger, Motwani, and Sudan gave an approxi-

mation algorithm for graph coloring that also involves

solving a semidefinite program. Solving these semidefi-

nite programs using known methods (ellipsoid, interior-

point ), though polynomial-time, is quite expensive. We

show how they can be approximately solved in ~(nm)

time for graphs with n nodes and m edges.

1 Introduction

It is well-established that linear programs can be useful

in ( 1) estimating the value of an integer program, and

(2) obtaining approximately optimum solutions to an

integer program. Similar use of semidefinite program-

ming is emerging as an important technique. LOV4SZ [1 5]

showed semidefinite programming could be used to com-

pute the Shannon capacity of a graph, often referred to

as the theta function; this is a number that lies between

the size hf the maximum clique and the minimum num-

ber of colors. LOV6.SZand Schrijver [16] described a way

to use semidefinite programming to estimate the value

of integer programs.

In an important recent breakthrough, Goemans and

Williamson [4] discovered an approximation algorithm

for graph MAX CUT whose accuracy is significantly

better than that of the previously known algorithms.
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Their algorithm is based on obtaining a near-optimum

solution to a semidefinite program.

Building on this work, Karger, Motwani, and Su-

dan [9] discovered an approximation algorithm for graph

coloring. If the input graph is 3-colorable, their algo-

rithm obtains a coloring that uses O (n 1/4 log n) colors.

More generally, if the input graph is k-colorable, the col-

oring obtained by the algorithm uses o(nl - l/(k+l)) col-

ors. Their algorithm, like that of Goemans and Williamson,

is based on obtaining a near-optimum solution to a

semidefinite program.

Semidefinite programming is a generalization of lin-

ear programming, and a special case of convex program-

ming. Essentially, what is added to linear programming

is the ability to specify constraints of the form “X is a

positive-semidefinite matrix”, where X is a symmetric

matrix whose entries are variables. Such a constraint

is written X ~ O. A positive-semide finite matrix is a

matrix X all of whose eigenvalues are nonnegative. An

equivalent condition is that for any column vector u,

the value of u~Xu is nonnegative.

Semidefinite programming is a special case of con-

vex programming. The first algorithm proposed for

semidefinite programming was based on the ellipsoid

method. Lov&sz gave a subroutine that, given a ma-

trix X that is not positive-semidefinite, finds a hyper-

plane separating X from the set of positive-semidefinite

mat rices. This subroutine, combined with the ellip-

soid method, provided a polynomial-time algorithm for

semidefinite programming. However, the complexity of

this algorithm is quite high.

Nesterov and Nemirov~ky showed [17] how to use the
interior-point method to solve semidefinite programs.

Alizadeh [1] showed how an interior-point algorithm

for linear programming could be directly generalized to

handle semidefinite programming. Since the work of

Alizadeh, there has been a great deal of research into

such algorithms [8, 24, 20, 25, 6, 12, 3]. Essentially,

the number of itera~ions to achieve an approximately

optimal solution is O(@ depending on the quality of
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the initial solution, and each iteration involves either

factoring a matrix or solving a least-squares problem.

Goemans and Williamson’s algorithm involves solv-

ing a semidefinite program with O(n) linear constraints.

Each iteration takes 0(n3) time. Thus the time re-

quired to solve this problem is 0(n3”5). Furthermore,

after the algorithm computes a solution matrix X, it

must compute the Cholesky factorization of X; this can

be done in O (n3) time. The algorithm of Karger, Mot-

wani, and Sudan requires the solution to a semidefinite

program with O(m) linear constraints. The time re-

quired using a straightforward approach is 0(@m3).

In this paper, we propose an alternative approach.

We apply the method of Plotkin, Shmoys, and Tar-

dos [18] to find an approximate solution to each of

these semidefinite programs. An iteration involves a

simpler semidefinite program. We show in solving this

program, we can restrict our attention to rank-one solu-
tions X, i.e. solutions of the form X = UUT, where u is

an n-element vector. When we make this substitution,

the resulting program turns out to be equivalent to an

eigenvector problem, for which we can use an approach

called the power method.

The power method can exploit the sparsity of the

matrix, which in turn reflects the sparsity of the graph.

Using a randomized method for selecting an initial vec-

tor, we bound the number of iterations of the power

method required to find a eigenvalue solution good enough

for our purposes. As a result, for fixed c, we obtain ran-

domized algorithms that find an c-optimal solutions to

the semidefinite programs in only O(nm) time, where m

is the number of edges. Furthermore, the form in which

this solution is given makes it trivial to find its Cholesky

factorization (or rather a decomposition that serves the

same purpose). Thus by using our algorithms as sub-

routines, one implement the MAX CUT algorithm of

Goemans and Williamson and the graph c~loring algo-

rithm of Karger, Motwani, and Sudan in O(nm) time.

The difference between our d(nm) bound and the

~ (n3”5) bound of the interior-point method is particu-

larly striking when the graph is very sparse, i.e. m =

O(n). Thus one of the key advantages of our approach

is that we can provably exploit the sparsity of the input

graph.

The catch, of course, is that our algorithm finds only
an c-approximate solution to the semidefinite programs.

The ellipsoid method and interior-point method also

find approximate solutions, but their running-times’ de-

pendence on c is much nicer. Consequently, our algo-
rithm is useful only when one is willing to sacrifice a

little in the quality of the output in order to get the so-
lution more quickly—or when the input graph is so big

(and yet sparse) that the interior-point method would

take more time than feasible.

2 Background and overview

The basis of our approach is the method of Plotkin,

Shmoys, and Tardos for approximately solving what

they call fractional packing and covering problems. Their

method is analogous to Lagrangean relaxation, in which

constraints are replaced by a “penalty” component of

the objective function, such that violations of the con-

straint are penalized. The difficulty in Lagrangean re-

laxation is in choosing the weights of the penalties. In

the method of Plotkin, Shmoys, and Tardos, the penal-

ties are determined directly from a current candidate

solution. These penalties are used to select a direction

to move from the current candidate solution to obtain

the next candidate solution, and the process is repeated.

Some of the particulars of their approach originated

in the work of Shahrokhi and Matula ~2] on approxi-

mate solution of a multicommodity flow problem. Shahrokhi

and Matula proved a polynomial but rather high bound

on the running time of their algorithm. A much faster

algorithm for this problem was developed by Klein, Plotkin,

Stein, and Tardos [10]. One important ingredient in

the improvement is a formulation of approximate op-

timality (relaxed complementary slackness conditions)

that works well in this setting. This multicommodity

flow algorithm was generalized by Leighkon, Makedon,

Plotkin, Stein, Tardos, and ‘Dagoudzw [14]. Plotkin,

Shmoys, and Tardos then took a final step and general-

ized this multicommodity flow algorithm, obtaining not

a single algorithm but a whole framework in which al-

gorithms for a variety of problems could be formulated.

This framework, like that of the ellipsoid algorithm [5]

and the method of Vaidya [23], casts algorithms in terms

of a subroutine, an oracle. For the ellipsoid algorithm,

the subroutine is called a separation oracle. For Plotkin,

Shmoys, and Tardos, the subroutine must find an opti-

mum (or near-optimum) solution to a simpler optimiza-

tion problem. Specifically, if the goal is to find a vector

that satisfies some linear inequalities and in addition

lies in a given convex body P, the subroutine must find

a vector of minimum cost of all those in P.

2.1 Solving the MAX CUT semidefinite pro-

gram

To cast the MAX CUT semidefinite program in this

framework, we take P to be the set of positive-semidefinite

matrices X satisfying the linear inequality ~ij Lij~ij =

1. To obtain an algorithm, we must supply a subroutine

to find such a matrix X minimizing a weighted sum of

its diagonal elements. That is, we must find the mini-

mizer of

i i~
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We show that the minimum is achieved by a rank-one

matrix, a matrix X of the form uu~, where u is an

n-element column vector. Furthermore, we show that

the best such matrix is that defined by the vector u

that is the eigenvector corresponding to the maximum

eigenvalue of a matrix derived from L.

Finding an eigenvector of a matrix would take too

much time. We exploit the fact that we need only an

approximate solution, and can therefore use a few iter-

ations of a method called the power method.

Since L is positive-semidefinite, all its eigenvalues

are nonnegative. Hence its maximum eigenvalue is the

eigenvalue of maximum absolute value. The power method

uses the fact that the eigenvalues of Ak are the kth pow-

ers of the eigenvalues of A. If k is big enough, therefore,

small differences in eigenvalues of A result in large dif-

ferences in eigenvalues of A k. Instead of computing Ak

directly, we can make do with the matrix-vector prod-

uct Akz(o), where x(o) is a suitably chosen initial vec-

tor. We can compute this product by computing a series

of k matrix-vector products Ax(i). Computing each of

these products takes time propn?tional to the number

of nonzero elements of A. In this case, the number is

O(m). We show that a good enough solution is ob-

tained by taking k = O(c - 1 log n). We also show that a

random selection of the initial vector is sufficiently good

with high probability. Thus we obtain a fast subroutine

to optimize over P.

Some additional work is needed. We need to ensure

that the vectors obtained by the power method have

reasonably small components. We do this by perturb-

ing the initial problem in a way that does not modify

the optimum value too much; an approximately optimal

solution to the perturbed problem yields and approxi-

mately optimal solution to the original problem. We

also need to show how to obtain a good initial solu-

tion to the semidefinite program. For this, we use the

previously known approximation algorithm for MAX

C[JT, due to Sahni and Gonzalez [2 1]. Finally, we show

that after on] y only O(C - 2n log n) iterations of opti-

mizing over P, we obtain an c-optimal solution .Y to

the semidefinite program. The time required is thus

o(#nrnlog* n). Furthermore, in practice we could

run the power method for many fewer iterations by us-

ing as its initial vector the output obtained from the

power method the last time. Thus one factor of c-1 in

our analysis seems superfluous.

Since in each iteration the matrix output by the sub-

routine has the form UUT, we obtain X as the sum of

such rank-one matrices:

(1) .Y = ~ilj~(lJT +... +u(”)u(r)T.

That is,

(2) X,j = U(lJ,IJ(l)j + . ..+ ~(r)iu(r)j.

The aDmoximation al~orithm of Goemans and Williamson

requir~s that we com~ute a matrix H such that HT H

equals X. That is, the i~h column of H is a vector hi

such that

Xij = hi . hj = h:l)hj.l) +-.. .hf%:).

As evident from (2), we can derive such vectors hi di-

rectly from the ut~)’s appearing in (1), namely we set
~(~) :=@

:

2.2 The graph coloring semidefinite program

In casting this problem in the framework of Plotkin,

Shmoys, and Tardos, we take the convex body P to be

the set of positive-definite matrices X whose diagonal

elements are 1. Thus in this case P involves n linear

constraints instead of just one, as in the case of MAX

CUT. Moreover, the function we must optimize over P

involves all the components of X rather than just the

diagonal elements (as was the case in MAX CUT). The

objective function has the form ~ij CijXij. Thus opti-

mization over P cannot be done uskg a rank-one ma-

trix. However, by making a small perturbation in this

optimization problem, we transform it into precisely the

MAX CUT semidefinite program. Thus we can use our

algorithm for that problem to approximately optimize

over P. (Once, again we show that the perturbation

is such that an approximately optimal solution to the

perturbed problem yields an approximately optimal so-

lution to the original problem.)

This time, we need to optimize over P only 0((-2 log n)

times. Thus we obtain an algorithm for the coloring

semidefinite program that takes 0(c-5nrn log3 n) time.

As mentioned in Subsection 2.1, by being more clever

about how we use the power method, we can probably

remove one factor of f-1 in practice.

3 Preliminaries

All vectors in the paper are n x 1 column vectors. All

matrices in this paper are n x n and symmetric. Let

u and v be two vectors. Define u o v to be the dot

product UTV of u and v. Let A and B be two matrices.

Define A ● B to be the trace of AB, which is equal to

~~<i,j<nAijBiJ. One can easily verify that A. (uuT) =

UTAU for any vector u. Let I be the identity matrix and

let J be the all-one matrix. Let r be the all-one vector.

A matrix X is positive semidejinite, denoted X & O,

if every eigenvalue of X is nonnegative. It is well-known

that X ~ 0 if and only if X can written as ~UEu UUT,

where U is a set of at most n orthogonal vectors.

Let G be a simple undirected graph of n nodes with

nonnegative costs on edges. Let C be the cost matrix
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of G, where Cij is the cost of the edge ij of G. Let ~

be the Laplacian of G, defined as

-{

‘C~j i+j

‘ij = ~l<k<. Cik i = j“

For convenience we refer to the MAX CUT semidef-

inite program as the VECTOR MAX CUT problem.

The VECTOR MAX CUT problem is the following

semidefinite program as shown in [4].

max ~C ● (J – X)
St. Xii = 1 for every 1 < i ~ n

x~o.

Lemma 1 ensures that the above semidefinite program

can be rewritten as follows.

max ~ie X

(3) St. X~;=l foreveryl<i<n

x~o.

Lemma 1 Let ~ be the Laplacian of a graph correspond-

ing to the cost matrix C. Let X be a matrix such that

every diagonal element of X is one. Then C ● (J – X) =

Eex.

Proof Let D = ~+ C. Clearly D is a diagonal matrix.

Since every diagonal element of X is one, we know that

D ● X = C ● J. Therefore

Lo X= Do X–Co X= CeJ– Ce X.

•J

The VECTOR COLORING problem is the following

semidefinite program as shown in [9].

min A

(4) ‘“t”
Xi; = 1 for every 1< i < n

X,j s A for every edge ij of G
x ~ o.

For a mathematical program, e.g. (3), an assign-

ment to the variables is said to be a feasible solution

if it satisfies the constraints. The value of such an as-

signment is the value of the objective function at that

assignment. Let f(.) be the objective function of a

mathematical program Q. Let X* be an optimal so-

lution to P. A feasible solution X to Q is c-optimal if

(1 + ()-1 < ~ < (1 + c). For simplicity of time-

bounds, we assume throughout that c > l/n.

4 VECTOR MAX CUT

4.1 Problem reduction

For simplicity of the analysis, we assume that the edge

costs of G are scaled such that the sum of edge costs

of G is exactly one. It follows that that ~ .1 = 2.
Define L = ~+ I/n. Consider the following semidefinite
program.

It is easy to see that this program is equivalent to (3), in

that a feasible solution to one can be easily transformed

into a feasible solution to the other. For example, let

(X*, A“) be an optimal solution to (5). Since the di-

agonal elements of L are nonnegative, we can assume

without loss of generality that all the d’iagonal elements

of X are exactly the maximum diagonal element, A* (by

increasing them and then resealing if necessary). If we

divide every element of X* by A“, we get a matrix X’

in which each diagonal element is at most one. Increase

each diagonal element until it is one. Since L ● X* = 1,

we obtain L ● X’ = l/A*. Finally, since L = ~ + l/n, L
wehave Lox’ =zox’+l, so~jo X’=~(Lex’– l).

Since thk transformation is invertible, we conclude that

an optimum solution to one program yields an optimum

solution to the other. We can say more, however. Be-

cause the identify matrix 1 is a feasible solution to (3),

the optimum value of that program is at least ~~ .1,

which is 1/2 by our assumption about the edge costs of

G. It follows that an c-optimal solutiom to (5) yields a

2c-optimal solution to (3), at least aa long as t <0.5.

More formally, let (X, A) be the ~-optimal solution

to (5), and let (X*, A*) the optimal solution. Let .~

denote the solution to (3) corresponding to (X, A), and

let X* be the optimal solution. Then we have

> I/A–l

~ (1+6)-1/A* – 1

~ (l+ E)-1(1/A*– l–t)

> (l+ C)-1(1 –o.5t)z ax*

~ (1+2 E)-’ ZO X*,

where the last inequality follows because ~ < 0.5.

For the rest of the section we focus on finding an

c-optimal solution to (5).

4.2 Bounding the. values

We first give a lower bound on the optimum value based

on the assumption that the sum of edge costs of G is one.
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We then give an upper bound on the feasible values,

which also holds for the optimal value.

Lemma 2 The optimum value is at least 0.17.

Proof Let ~“ be an optimal solution to (3). The

results in [4] ensure that ~~ ● X* is at most the

sum of edge costs. Since we assume that the sum of

edge costs of G is one, it follows that L ● X* < ~.

One can easily verify that A“ = ~. Therefore

A* > *8 >0.17. ❑

The following lemma upperbounds the value of any

feasible solution.

Lemma 3 For any X satisfying X ~ O and JZ ● X = 1,

each diagonal element of X is at most n.

Proof Since L = ~ + Z/n, it follows that 1 ● X =

n( 1 — ~ ● X). Note that ~ & O by Ger~gorin’s theorem

(e.g. see j 10.6 of [13]). Since also X ~ O, we obtain

Lo X~O, andthus Xll+... +X.. =lo X<n. Since

X & O, each Xii is nonnegative. It follows that Xii < n

for every 1< i < n. D

We now apply the framework of Plotkin, Shmoys,

and Tardos [18]. We view (5) as

where P={ X: Lo X=l, X&O}.

The algorithm depends on a parameter p that Plotkin,

Shmoys, and Tardos call the width of the formulation.

The width in this case is by definition max{Xii : X c P}.

By Lemma 3, the width is at most n. Now we can de-

scribe the algorithm.

4.3 The algorithm

Let C be the cost matrix for the given graph G. Let

c be the given positive precision parameter. We give

an algorithm that produces an c-optimal solution. The

algorithm starts with finding a l-optimal initial solu-

tion (X, A). It then iteratively updates (X, ~) until it
is c-optimal. In each iteration a procedure IMPROVE

is called to improve the precision of (X, A). Specif-

ically, after the kth iteration (X, ~) is guaranteed to

be 2-k-optimal with high probability. The algorithm

VECTORMAXCUT(C, c) is as follows.

1. Scale C such that the sum of edge costs is one, and

then compute L from C.

3. Let c’= 1.

4. While d > c do

(a) Let c’= e’/2.

(b) Let (X, ~)= IMPROVE(X, A, 6’/7).

The procedure INITIAL(C) obtains an initial solu-

tion (X, A) from a greedy solution to the MAX CUT

problem. Using the greedy method by Sahni and Gon-

zalez [21], one can obtain a l-optimal solution to the

MAX CUT problem in time linear in the number of

edges. Moreover such a greedy cut has value at least

one half of the sum of edge costs. Let u be the charac-

teristic vector for the greedy solution to the 34AX CUT

problem, where ui = 1 for every node i on one side of

the cut, and uj = – 1 for every node j on the other

side of the cut. Clearly UUT is the corresponding fea-

sible solution to (3). Let c = ~ ● (uuT). We know

*C ~ ~, since the sum of edge costs is scaled to be one.

Hence c z 2. Let the return value (X, A) of INITIAL(C)

be (~, ~). Clearly (X, A) is feasible to (.5). Since

c ~ 2, A < 1/3. Thclefore the initial solution (X, A) is

l-optimal by Lemma 2.

At the beginning of the procedure IMPROVE (X, A, c),

we assume that A/A* = 1 + O(c). The solution (X’, A’)

output by this procedure satisfies A’/A* < 1 + e, so our

assumption holds for the next call to the procedure,

when d has been halved.

The procedure IMPROVE uses a positive vector y de-

fined as a function of the current solution (X. A). The

procedure proceeds iteratively to update the current so-

lution. In each iteration a procedure -DIRECTION(Y, c)

is called to obtain a matrix solution X that with high

probability is an approximate minimizer for

(7) #[y) = min{y~Xll + . . . +ynXn. : X c P}.

The current solution is moved towards ~-by a small

amount a. Namely let X := (1 – a)X + aX, and let A

be the maximum diagonal element of the new X. One

can easily verify that the new (X, A) is still feasible. Let

us define the notation (X)v by

(x), = y,x,, + . ..+ynxnn.

The procedure can stop when the following condition

holds.

The procedure IMPROVE (X, A., c) is as follows.

1. Let A = Ao.

Let a = 12E-1 ln(2nc-1).

Let a = c/(4cm).

2. Let (X, A) = INITIAL(C). ‘2. Repeat
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(a)

(b)

(c)

Let yi = eax’t foreveryi=l,..., n.

Let ~ = DIRECTION(y, c).

If condition (8) is satisfied then

Return (X, A).

else

Let X = (1 –a)x+ ai.

Let A = max{X1l, . . .. Xnn}.

It follows from the framework of Plotkin, Shmoys,

and Tardos that the number of iterations is O (c–2n log n).

In the next subsection, we give an implementation of

DIRECTION that takes 6(c-lrn) time. Thus we will ob-

tain the following lemma.

Lemma 4 The running time required by the algorithm

VECTORMAXCUT(C, E) is d(c-3mn).

4.4 The power method

Itremains to describe DIRECTION (y, c), which produces

an approximate minimizer for (7) with high probabil-

ity. One can easily verify that p(y) can be achieved by

a rank-one matrix UUT E P. Therefore it suffices for
DIRECTION(y, c) to obtain a vector u such that

(uUT), < (1+ f) P(Y).

We show that it is in fact an eigenvector problem to

find a feasible matrix UUT such that (uu~)v = p(Y).

The eigenvector problem can be approximately solved

by a well-known numerical algorithm called the power

method (e.g. see fj5.3 of [2]), which is one of the old-

est methods for computing the dominant eigenpair of a

matrix. Let L’ be a matrix defined as L~j = Lij /m.
One can easily verify that L’ ~ 0. Let v be a vector de-

fined by vi = ui/fi. Note that y is positive, so L’ and

w are both well-defined. Clearly L c (uuT) = L’ ● (vvT)

and (UUT)Y = v . v. It follows that

P(Y) = min{v *V : L’ ● (vvT) = 1}.

Therefore

l/p(y) = max{L’ ● (wwT) : w ow = 1}.

By Rayleigh-Ritz’s theorem (e.g. see Theorem 4.2.2

of [7]) we know l/p(y) is the maximum eigenvalue of

L’. A normalized eigenvector w in the eigenspace of

L’ corresponding to 1/p(y) is a vector that maximizes

L’ ● (wwT) over all normalized vectors. Let v = p(y)w,

and let u be obtained by ui = vi&. By the above dis-

cussion we know that UUT is a feasible solution such that

(UUT)Y = p(y). Clearly if w is close to the eigenspace
of -L’ corresponding to 1/p(v), then the corresponding

L ● (uuT) would be close to p(y). Specifically if w is

a normalized vector such that L’ ● (wwT) > 1/(( 1 +

~)p(y)), then the corresponding UUT would be an c-

optimal minimizer for (7). Therefore t;he problem of

finding an c-optimal minimizer for (7) is reduced to the

following problem:

Let A be the maximum eigenvalue of a pos-

itive semidefinite matrix A. Find a normal-

ized vector z such that AO(ZZT) ~ (l+c)-lA

For the rest of the section we focus on adapting the

power method to solve the above problem.

We first describe the power method as follows. The

method consists of a series of k iterations, where k is a

parameter to be determined. Each iteration consists of

a matrix-vector multiplication. In particular, initialize

by choosing a random normalized vectc,r Zo, and then

compute Z(k) = Ak Z(o) /\\ Akx(o) 112using the recurrence

~(i+l) = Aqi)/llAqi)l12.
Now we analyze the algorithm. Since A >0, ithas n

orthonormal eigenvectors w(l), . . . . w(n). Let Al, . . . . &

be the corresponding eigenvectors, and suppose they

are indexed so that Al ~ . . . ~ & ~ 0. It is known

that A can be written as ~lw(l)w~l +. . .+&w(n)~~nl.

Since {w(l),..., w(n) } are orthonormal, every arbitrary

normalized vector z can be written as alw(lj + . “ . +

anw(n), where a; + ...+a~ = 1. Note that

AkZ = E C&w(i)

l<i<n--

for any k > 0. It is not hard to see that as k grows

larger, Z(k) gets closer to u(l). The following lemma

gives an upper on the k that is required for z(k) to be a

normalized vector z such that A ● (ZZT) z (1 + c)- lA1.

Lemma 5 Let x(k) be as defined above. SUppoSe al z

O. If k

t) -l Al.

Proof

k< c-]

Assume A . (z(k)x~))

ln(~- 1a~2). Note that

< Al/(l +c). We show

I<t<n.-

It follows from the assumption that

Let & = Al – (1 + OAi for every 2 < i < ?~. The

above inequality can be rewritten as follows by moving
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the first terms of both summations to the left, and the

remaining terms to the right.

2<i<n--

Clearly & ~ . . . ~ C$n. If & were less than or equal

to zero, then the RHS of (9) would be less than or equal

to zero, which contradicts the fact that the LHS of (9)

is nonnegative. Therefore we know & >0. Let t be the

smallest index such that & >0. It follows that

Therefore ta~(~l/~t) 2k < 1. since &t > 0, we know

that Al/At > (1 + e). Thus ca~(l + c)2k < 1. Since

ln(l + t) ~ ~/2 for any O ~ c ~ 1, it follows that k <

C-l ln(c-1cr~2). ❑

Since the number of iterations required by the power

method is determined by the a? of Z(o), it suffices to

show how to choose the initial vector z such that its a;

is sufficiently large. It turns out that randomly choosing

Z(o) uniformly from the surface of the n-dimensional

unit sphere is sufficient. lNote that the al of x is exactly

X.w( 1,, the projection of z on W(I). The following lemma

lowerbounds the probability that a; ~ O(n-c-l) for

any c ~ O.

Lemma 6 Suppose n > 2. Let z’ be a fixed normal-

ized vector in n-dimensional space. Let z be a random

vector that is uniformly distributed on the surface of the

n-dimensional unit sphere. Then the probability that (z .

J+)2 < * is at most n-C for any c ~ O.

Proof Let a = ~. Clearly Pr((x . 2’)2 ~ a2) =

Pr(lz. z’l ~ a). We show Pr(lz .2?[ ~ a) ~ n-’.

Let e = arccos a. It is known by multivariable anal-

ysis (e.g. see $60 of [19]) that

17T
< –(––e),

,s 2

I
T/2

where .9 = sin?l_2 0 dO. Note that O <2 sin O, for
o

any 6 < $. It follows that ~ – d ~ 2sin($ – d) =

2 cos 6 = 2a = n-c-1. Therefore it suffices to show that

s > ;.

It is known (e.g. see (131) of ~60 in [19]) that

r(~ + I)~m”/2
s=

2(n – l)r(~-luq: + 1)

for any n z 2. Therefore

c1

A uniformly distributed random vector z on the sur-

face of the n-dimensional unit sphere can be obtained by

randomly generating n values xl, . . . . Xn independently

from the standard normal distribution, and then nor-

malizing the resulting vector (e.g. see page 130 of [1 I].)

The standard normal distribution can be simulated us-

ing the uniform distribution between O and 1 (e.g. see

page 117 of [11].) Let x = ~(k), where k = [~ In(@)l.

It follows from Lemma 5 and Lemma 6 that A. (zz*) z
(1 +E)-’,ll holds with probability at least 1–n-c. Since

each iteration of the Dower method involves a matrix-

vector multiplication, which takes time O(m), the run-

ning time of DIRECTION(Y, ~) is O(rnc–l In n).

5 VECTOR COLORING

In this section we show how to obtain an O(c) -optimal

solution to (4), which we restate here for convenience.

min A

(lo) ‘t.
X~i=l foreveryl$i<n

X;j ~ A for every edge ij of G

x&o.

In order to put the problem into the framework of

Plotkin, Shmoys, and Tardos [18], we can reformulate

this program as follows.

max ~

St. X~j ~ y for every edge ij of G

x E P’,

where P’ = {X’ : Xii = –1, –X’ > O}. Let P = –P’.

Like P, P’ is a convex body. T~e framework of [18]

requires that we optimize over P’. Equivalently, we can
optimize over P.

5.1 Definitions

In this section, we say a matrix X is feasible if X c

P. We say (X, A) is feasible if X is feasible and every

component Xij of X, where ij is an edge of G, is at

most A
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A matrix Y is a cost matrix for G if Y is a normeg-

ative matrix such that Yij = O for every ij that is not

an edge of G. Let

P(Y) = min{Y ● X : X E P},

Since 1 k feasible and Y ● 1 = O, we know that p(Y) ~

o.

5.2 Boundhg the values

The following lemma bound the value of any feasible

solution, including the value of an optimal solution.

Lemma 7’ Let (X, A) be a feasible solution. Then A <1.

Proof By the feasibility of (X, A) we know X ~ O,

which implies that u~Xu ~ O for any vector U. If Xij >

1 for some edge ij of G, then UTXU < 0, where u is

defined by

{

1 ifk=i
u~ = –1 ifk=j

O otherwise.

The lemma thus follows. ❑

5.3 The algorithm

We give an algorithm that produces an t-optimal solu-

tion. The algorithm starts with finding an initial solu-

tion (X, ~). It then iteratively updates (X, A) until it

is t-optimal. In each iteration a procedure IMPROVEC

is called to improve the precision of (X, A). Specifi-

cally each call to IMPROVEC either reduces the value

of the current solution by a factor of two or yields a

solution that is near-optimal with respect to the pre-

cision parameter given to IMPROVEC. The algorithm

VECTORCOLORING(G, t) is as follows.

1. Let (X, A) = INITIAL.

Let d = 2.

2. While d > ~ do

(a) Let c’= c’/2.

(b) While (X, A) is not d-optimal do

Let (X, A) = IMPROVEC(X, A, ~).

The procedure INITIAL obtains an initial solu-

tion (X, ~) as follows:

{

1 ifi=j

X~j = ‘~ if ij is an edge of G

O otherwise.

Clearly X ~ O (e.g. see the Ger~gorin’s theorem in

$10.6 of [13]), and thus the initial solution (X, -*) is

feasible.

At the beginning of the procedure IMPROVEC(X, A, c),

we assume that A*/A = 1 + O(c). The solution (X’, A’)

output by this procedure satisfies A“ /X ~ 1 + c, so out

assumption holds for the next call to the procedure,

when d has been halved.

The procedure IMP ROVEC uses a nonnegative ma-

trix Y defined as a function of the current solution

(X, A). The procedure proceeds iteratively to update

the current solution. A procedure DIRECTIONC(Y, E) is

called in each iteration to obtain a matrix ~ that with

high probability is an approximate minimizer for

(11) p(Y) = rnin{Y .X : X E P}.

The current solution is moved towards ~ by a small

amount a. Namely let X = (1 – a)X + u~, and let

A be the new maximum Xij over all i,i that are edges

of G. One can easily verify that the new (X, A) is still

feasible. The procedure can stop when the following

condition holds.

(12) (x)y - (x)g < ~((x)v + Ay. i)

The procedure IMPROVEC(X, Ao, c) is as follows.

1. Let A =Ao.

Let a = 4c-l&l ln(4n2c-1).

Let a = ~/(4a).

2. Repeat

(a) Let fij = eax’~ for every edge ij of G.

(b) Let % = DIRECTIONC(Y, t).

(c) If A ~ Ao/2 or (12) is satisfied then

Return (X, A).

else

Let X = (1 –a)X+aX.

Let A be

max{ X,j : ij is an edge of G}.

By Lemma 7 we know the width of ( 10) is one. It

follows from the framework of [18] thi~t the number of

iterations is 0(c-2 log n). Suppose G is k-colorable. It

follows from Lemma 9 that DIRECTION can be imple-

mented as VECTORMAXCUT(Y, +), which takes time

d(c-3k3n log n). Therefore we obtain the following lemma.

Lemma 8 The running time required by the algorithm

VECTORCOLORING(G, E) is 6( C-5 TTW)I.

Lemma 9 Supp:se-G is k-colorable, where k z 2. Sup-

pose c <1. Let (X, J) an &-optimal sollution to the graph

MAX <UT problem corresponding to the cost matrix Y.

Then X is an eoptimal minimizer for (11).
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Proof Let (X, ~) bean optimal solution to the VEC-

TOR COLORING problem (10). Since G is k-colorable,

it follows from the results in [9] that A ~ ~ S – ~.

By the feasibility of (X, A) we know that

(13) YOXS-;YOJ.

Let X* bean optimal solution to the VECTOR MAX-

CUT problem (3) corresponding to the cost matrix Y.

C2early P(Y) = Y ● X*. Since X is also feasible for (3),

it follows from Lemma 1 that

(14) -Y OX* >-YQX,

By the. assumption we know

YO(J– X)2(1 +;)-l YO(J– X”),

and thus

-(l+&)Yo~ 2 -~ YoJ-Yo X*

~ -(1 - ;) YOX*,

using (13) and (14). Since e ~ 1, we know-that (1 –

:)(1 + *)-1 ~ (1 +C)-l. Therefore -Yo X ~ –(1 -t

e) -1 Y. X*. The lemma follows because Y. X* = p(Y).
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