
LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS
VIA CANONICAL ORDERINGS∗

XIN HE† , MING-YANG KAO‡ , AND HSUEH-I LU§

SIAM J. DISCRETE MATH. c© 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 317–325

Abstract. Let G be an embedded planar undirected graph that has n vertices, m edges,
and f faces but has no self-loop or multiple edge. If G is triangulated, we can encode it using
4
3
m − 1 bits, improving on the best previous bound of about 1.53m bits. In case exponential time

is acceptable, roughly 1.08m bits have been known to suffice. If G is triconnected, we use at most
(2.5 + 2 log 3) min{n, f} − 7 bits, which is at most 2.835m bits and smaller than the best previous
bound of 3m bits. Both of our schemes take O(n) time for encoding and decoding.

Key words. data compression, graph encoding, canonical ordering, planar graphs, triconnected
graphs, triangulations

AMS subject classifications. 05C30, 05C78, 05C85, 68R10

PII. S0895480197325031

1. Introduction. This paper investigates the problem of encoding a given graph
G into a binary string S with the requirement that S can be decoded to reconstruct
G. The problem has been studied generally with two primary objectives. One is to
minimize the length of S, while the other is to minimize the time needed to compute
and decode S. In light of these goals, a coding scheme is efficient if its encoding
and decoding procedures both take polynomial time. A coding scheme is succinct if
the length of S is not much larger than its information-theoretic tight bound, i.e., the
shortest length over all possible coding schemes.

As the two primary objectives are often in conflict, a number of coding schemes
with different trade-offs have been proposed from practical and theoretical perspec-
tives. The most well known efficient succinct scheme is the folklore scheme of encoding
a rooted-ordered n-vertex tree into a string of balanced n − 1 pairs of left and right
parentheses, which uses 2(n− 1) bits. Since the total number of such trees is at least

1
2(n−1) · (2n−2)!

(n−1)!(n−1)! , the minimum number of bits needed to differentiate these trees is

the logarithm1 of this quantity, which is 2n− o(n) by Stirling’s approximation. Thus,
two bits per edge is an information-theoretic tight bound for encoding rooted-ordered
trees. The standard adjacency-list encoding of a graph is widely useful but requires
Θ(mlogn) bits, where m and n are the numbers of edges and vertices, respectively [3].
For certain graph families, Kannan, Naor, and Rudich [10] gave schemes that en-
code each vertex with O(logn) bits and support O(logn)-time testing of adjacency
between two vertices. For connected planar graphs, Jacobson [9] gave an Θ(n)-bit
encoding which supports traversal in Θ(logn) time per vertex visited. This result
was recently improved by Munro and Raman [17]; their schemes encode binary trees,

∗Received by the editors August 8, 1997; accepted for publication (in revised form) February 18,
1999; published electronically September 7, 1999.

http://www.siam.org/journals/sidma/12-3/32503.html.
†Department of Computer Science and Engineering, State University of New York at Buffalo,

Buffalo, NY 14260 (xinhe@cse.buffalo.edu). The research of this author was supported in part by
NSF grant CCR-9205982.
‡Department of Computer Science, Yale University, New Haven, CT 06250-8285 (kao-ming-

yang@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9531028.
§Department of Computer Science and Information Engineering, National Chung-Cheng Univer-

sity, Chia-Yi 621, Taiwan, ROC (hil@cs.ccu.edu.tw).
1All logarithms are of base 2.

317

318 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

rooted-ordered trees, and planar graphs succinctly and support several graph opera-
tions in constant time. For dense graphs and complement graphs, Kao, Occhiogrosso,
and Teng [14] devised two compressed representations from adjacency lists to speed up
basic graph techniques such as breadth-first search and depth-first search. Galperin
and Wigderson [6] and Papadimitriou and Yannakakis [19] investigated complexity
issues arising from encoding a graph by a small circuit that computes its adjacency
matrix. For labeled planar graphs, Itai and Rodeh [8] gave an encoding procedure
that requires 3

2n logn + O(n) bits. For unlabeled general graphs, Naor [18] gave an

encoding of n2

2 − n logn+O(n) bits, which is optimal to the second order.
Our work aims to minimize the number of bits needed to encode an embedded

planar graph G which is unlabeled and undirected. We assume that G has n vertices,
m edges, and f faces but has no self-loop nor multiple edge. (See [2, 3, 7, 16] for
the graph-theoretic terminology used in this paper.) Note that if polynomial time
for encoding and decoding is not required, then any given graph in a large family
can be encoded with the information-theoretic minimum number of bits by brute-
force enumeration. This paper focuses on schemes that use only O(n) time for both
encoding and decoding.

For a general planar graph G, Turán [21] gave an encoding using 4m bits asymp-
totically. This space complexity was improved by Keeler and Westbrook [15] to about
3.58m bits. They also gave encoding algorithms for several important classes of pla-
nar graphs. In particular, they showed that if G is triangulated, it can be encoded
in about 1.53m bits. If G is triconnected, it can be encoded using 3m bits. In this
paper, these latter two results are improved as follows. If G is triangulated, it can be
encoded using 4

3m−1 bits. It is interesting that rooted-ordered trees require two bits
per edge, while the seemingly more complex plane triangulations need fewer bits. Note
that Tutte [22] gave an enumeration theorem that yields an information-theoretic tight
bound of roughly 1.08m bits for plane triangulations that may contain multiple edges.
If G is triconnected, we can encode it using at most (2.5 + 2 log 3) min{n, f}− 7 bits,
which is at most 2.835m bits. Both of our coding schemes are intuitive and simple.
They require only O(n) time for encoding as well as decoding. The schemes make new
uses of the canonical orderings of planar graphs, which were originally introduced by
de Fraysseix, Pach, and Pollack [4] and extended by Kant [11]. These structures and
closely related ones have proven useful also for drawing planar graphs in organized
and compact manners [12, 13, 20].

This paper is organized as follows. In section 2, we present our coding scheme for
plane triangulations. In section 3, we generalize the scheme to encode triconnected
plane graphs. We conclude the paper with some open problems in section 4.

2. A coding scheme for plane triangulations. This section assumes that G
is a plane triangulation. Thus, n ≥ 3 and G has m = 3n− 6 edges.

Let v1, . . . , vn be an ordering of the vertices of G, where v1, v2, vn are the three
exterior vertices of G in the counterclockwise order. After fixing such an ordering,
let Gk be the subgraph of G induced by v1, . . . , vk. Let Hk be the exterior face of
Gk. Let G −Gk be the subgraph of G obtained by removing v1, . . . , vk. Our coding
scheme uses a special kind of ordering defined as follows.

Definition 2.1 (see [4]). An ordering v1, . . . , vn of G is canonical if the following
statements hold for every k = 3, . . . , n:

1. Gk is biconnected, and its exterior face Hk is a cycle containing the edge
(v1, v2).

2. The vertex vk is on the exterior face of Gk, and the set of its neighbors in

XIN HE, MING-YANG KAO, AND HSUEH-I LU 319

6

4

7

35

1 2

8

Fig. 2.1. A plane triangulation and a canonical ordering.

Gk−1 forms a subinterval of the path Hk−1 − {(v1, v2)} and consists of at
least two vertices. Furthermore, if k < n, vk has at least one neighbor in
G−Gk. Note that the case k = 3 is somewhat ambiguous due to degeneracy,
and H2 − {(v1, v2)} is regarded as the edge (v1, v2) itself.

Figure 2.1 illustrates a canonical ordering of a plane triangulation. Note that every
plane triangulation has a canonical ordering which can be computed in O(n) time [4].
A canonical ordering of G can be viewed as an order in which G is reconstructed
from a single edge (v1, v2) step by step. At step k with 3 ≤ k ≤ n, the vertex vk
and the edges between vk and its lower ordered neighbors are added into the graph.
For the sake of enhancing intuitions, we call Hk−1 the contour of Gk−1; denote its
vertices by c1(= v1), c2, . . . , ct−1, ct(= v2) in the consecutive order along the cycle
Hk−1; and visualize them as arranged from left to right above the edge (v1, v2) in the
plane. When the vertex vk is added to Gk−1 to construct Gk, let c`, c`+1, . . . , cr be
the neighbors of vk on the contour Hk−1. After vk is added, the vertices c`+1, . . . , cr−1

are no longer contour vertices. Thus, we say that these vertices are covered by vk.
The edge (vk, c`) is the left edge of vk, the edge (vk, cr) is the right edge of vk, and
the edges (cp, vk) with ` < p < r are the internal edges of vk.

There is no published reference for the following folklore lemma; for the sake of
completeness, we include its proof here.

Lemma 2.2. Let v1, . . . , vn be a canonical ordering of G. Let T1 (respectively,
T2) be the collection of the left (respectively, right) edges of vj for 3 ≤ j ≤ n − 1;
similarly, let Tn be that of the internal edges of vj for 3 ≤ j ≤ n.

1. T1 is a tree spanning over G− {v2, vn}.
2. T2 is a tree spanning over G− {v1, vn}.
3. Tn is a tree spanning over G− {v1, v2}.

Proof. The statements are proved separately as follows.

Statement 1. For i = 3, . . . , n− 1, let Di be the collection of the left edges of vj
for 3 ≤ j ≤ i. We prove by induction on i the claim that Di is a tree spanning over
v1, v3, . . . , vi. Then, since T1 = Dn−1, the claim implies the statement. For the base
case i = 3, the claim trivially holds. The induction hypothesis is that the claim holds
for i = k − 1 < n − 1. The induction step is to prove the claim for i = k ≤ n − 1.

320 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

Dk is obtained from Dk−1 by adding the left edge (vk, c`) of vk. By the induction
hypothesis, Dk−1 is a tree spanning over v1, v3, . . . , vk−1. Since c` is the left-most
neighbor of vk on Hk−1, c` is some vj with 1 ≤ j ≤ k − 1 and j 6= 2. Thus, Dk−1

contains c`, and Dk is a tree spanning over v1, v3, . . . , vk−1, vk.
Statement 2. The proof is symmetric to that of Statement 1.
Statement 3. G has n vertices and 3n−6 edges. The edges (v1, v2), (v2, vn), (v1, vn)

are not in T1 ∪ T2 ∪ Tn. Thus, since T1 and T2 have n − 3 edges each, Tn has n − 3
edges. Then, since Tn is acyclic and does not contain v1 and v2, Tn is a spanning tree
of G− {v1, v2}.

A canonical ordering v1, . . . , vn is right-most if for all vk and vk′ with k′ > k
such that the neighbors of vk′ on Hk′−1 are all in Hk−1, the left-most neighbor of vk′

appears before that of vk when traversing Hk−1 from v1 to v2 clockwise. Intuitively
speaking, if there are more than one vertex that can be added to Gk−1, we always add
the right-most one. The ordering in Figure 2.1 is right-most. A right-most canonical
ordering is symmetric to a left-most one in [11] and can be computed from G in linear
time similarly.

Let v1, . . . , vn be a right-most canonical ordering of G. Let T1 be as in Lemma
2.2 for this ordering. Let T be the tree T1 ∪ {(v1, vn), (v1, v2)}. In Figure 2.1, T is
indicated by the thick lines. Our coding scheme uses T extensively. The right-most
depth-first search of T proceeds as follows. We start at v1 and traverse the edge
(v1, v2) first. Afterward, if two or more vertices can be visited from vk, we choose
the right-most one. More precisely, let P be the path in T from vk to v1 and then to
v2. Let D be the set of edges between vk and the available vertices. We visit a new
vertex through the edge in D that is next to P in the counterclockwise cyclic order
around vk formed by P and the edges in D. Note that the order in which the vertices
are visited by the right-most depth-first search is the right-most canonical ordering
v1, . . . , vn that defines T .

We are now ready to describe the encoding S of G as the concatenation of two
binary strings S1 and S2 as follows.

S1 is the binary string that encodes T using the folklore parenthesis coding scheme
where 0 and 1 correspond to “(” and “)”, respectively. In this encoding, T is rooted
at v1, and the branches are ordered the same as their endpoints are in the right-most
canonical ordering. Since T contains n vertices, S1 has 2(n− 1) bits.

S2 encodes the number of contour vertices covered by each vk with 3 ≤ k ≤ n.
First, we create a string of n − 2 copies of 0. The (k − 2)th 0 corresponds to vk. If
vk covers d vertices, we insert d copies of 1 before the corresponding 0. For example,
the string S2 for Figure 2.1 is

00010101110.

Since each vertex vk with 3 ≤ k ≤ n− 1 is covered exactly once, S2 has n− 3 copies
of 1. So |S2| = (n− 2) + (n− 3) = 2n− 5 bits. Hence, |S| = |S1|+ |S2| = 4n− 7 bits.

We next describe how to decode S to reconstruct G. Given S, we can uniquely
determine n from the length of S. Subsequently, we can uniquely determine S1 and
S2. From S1, we can reconstruct T . From T , we can recover the ordering v1, . . . , vn.
Then, we draw the edge (v1, v2) and perform a loop of n− 2 steps indexed by k with
3 ≤ k ≤ n, where step k processes vk. Before vk is processed, Gk−1 and its contour
Hk−1 have been constructed. At step k, we add vk and the edges between vk and
its lower ordered neighbors into Gk−1 to construct Gk as follows. From T , we can
identify the left-most neighbor c` of vk on the contour Hk−1 because c` is simply the

XIN HE, MING-YANG KAO, AND HSUEH-I LU 321

parent of vk in T . From S2, we can determine the number d of vertices covered by
vk. Thus, we add the edges (c`, vk), (c`+1, vk), . . . , (c`+d+1, vk) into Gk−1; note that
r = `+ d+ 1. This gives us the subgraph Gk and completes step k.

It is straightforward to carry out these encoding and decoding procedures in linear
time. Also, we can save one bit by deleting the last 0 in S2. Since v3 covers no vertex,
for n ≥ 4, we can save another bit by deleting the first 0 in S2. Note that for n = 3,
the last 0 in S2 is also the first 0 and cannot be deleted twice, but we can simply
encode the 3-vertex plane triangulation with zero bit without ambiguity. Thus, we
have the following theorem.

Theorem 2.3. A plane triangulation of m edges and n vertices with n ≥ 4 can
be encoded using 4n− 9 = 4

3m− 1 bits. Both encoding and decoding take O(n) time.

3. A coding scheme for triconnected plane graphs. This section assumes
that G is triconnected. To avoid triviality, let n ≥ 3.

Let v1, . . . , vn be an ordering of the vertices of G, where v1, v2, vn are on the
exterior face of G, and v2 and vn are neighbors of v1. Let Gk be the subgraph of
G induced by v1, . . . , vk. Let Hk be the exterior face of Gk. Let G − Gk be the
subgraph of G obtained by removing v1, . . . , vk. Our coding scheme for triconnected
plane graphs uses an ordering defined as follows.

Definition 3.1 (see [11]). An ordering v1, . . . , vn of a triconnected plane graph
G is canonical if the integer interval [3, n] can be partitioned into subintervals [k, k+q]
each satisfying either set of properties below:

1. The integer q is 0. The vertex vk is on the exterior face of Gk and has at
least two neighbors in Gk−1. Gk is biconnected and its exterior face contains
the edge (v1, v2). If k < n, vk has at least one neighbor in G−Gk.

2. The integer q is at least 1. The sequence vk, vk+1, . . . , vk+q is a chain on
the exterior face of Gk+q and has exactly two neighbors in Gk−1, one for
vk and the other for vk+q, which are on the exterior face of Gk−1. Gk+q

is biconnected and its exterior face contains the edge (v1, v2). Every vertex
among vk, . . . , vk+q has at least one neighbor in G−Gk+q.

As in section 2, we similarly define a right-most canonical ordering v1, . . . , vn of
G. Figure 3.1 shows a right-most canonical ordering of a triconnected plane graph.
Given a triconnected plane graph, we can find a right-most canonical ordering in
linear time [11]. With a right-most canonical ordering, G can be reconstructed from a
single edge (v1, v2) through a sequence of steps indexed by k′. There are two possible
cases at step k′, which correspond to the two sets of properties in Definition 3.1 and
are used throughout this section.

Case 1. A single vertex vk is added.
Case 2. A chain of q + 1 vertices vk, . . . , vk+q is added.
While reconstructing G, we collect a set T of edges as follows. Initially, T consists

of the edge (v1, v2). Let c1(= v1), c2, . . . , ct−1, ct(= v2) be the vertices of Hk−1, which
are ordered consecutively along the boundary cycle of Hk−1 and are arranged from
left to right above the edge (v1, v2) in the plane.

Case 1. Let c` and cr with 1 ≤ ` < r ≤ t be the left-most and right-most
neighbors of vk in Hk−1, respectively. After vk is added, c`+1, . . . , cr−1 are no longer
contour vertices; these vertices are covered at step k′. The edge (c`, vk) is included in
T .

Case 2. Let c` and cr with 1 ≤ ` < r ≤ t be the neighbors of vk and vk+q in Hk−1,
respectively. After vk, . . . , vk+q are added, c`+1, . . . , cr−1 are no longer contour ver-
tices; these vertices are covered at step k′. The edges (c`, vk), (vk, vk+1), . . . , (vk+q−1,

322 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

6

4
7

3 5

1 2

8
9

10
11

12

13

14 Step: Vertices added:

1
2
3
4
5
6
7
8

3, 4, 5
6, 7
8
9
10, 11
12
13
14

Fig. 3.1. A triconnected plane graph and a canonical ordering.

vk+q) are included in T .

In Figure 3.1, the edges in T are indicated by the thick lines. By an argument
similar to the proof of Lemma 2.2, Statement 1, T is a spanning tree of G. As in
section 2, we similarly define the right-most depth-first search in T . Note that the
order in which the vertices of T are visited by the right-most depth-first search is the
right-most canonical ordering v1, . . . , vn that defines T .

We are now ready to describe the encoding S of G by means of T . We further
divide Case 1 into three subcases.

Case 1a. No vertex is covered at step k′.
Case 1b. At least one vertex is covered at step k′ and the left-most covered vertex

c`+1 is adjacent to vk.

Case 1c. At least one vertex is covered at step k′ and the left-most covered vertex
c`+1 is not adjacent to vk.

Let β be the number of steps for reconstructing G. Let β1a, β1b, β1c, and β2 be the
numbers of steps of Cases 1a, 1b, 1c, and 2, respectively. We first consider the case
β1b ≥ β1c to encode G with Scheme I; afterwards, we modify Scheme I into Scheme
II for the case β1b < β1c.

In Scheme I, the encoding S of G is the concatenation of three strings S1, S2, and
S3. S1 is the folklore parentheses encoding of T , which is rooted and ordered in the
same way as in section 2. Since T has n vertices, S1 has 2(n− 1) bits.

To construct S2, first let Q = s1 ∗ s2 ∗ · · · ∗ sβ∗, where each sk′ is a binary string
that corresponds to the step k′ of reconstructing G based on the ordering v1, . . . , vn.
sk′ is determined as follows. The following two cases both assume that d vertices are
covered at step k′.

Case 1. Note that d = r− `−1. The string sk′ has d symbols corresponding to cj
with j = `+ 1, . . . , r− 1, respectively. If the edge (cj , vk) is present in G, the symbol
in sk′ corresponding to cj is 1; otherwise, the symbol is 0. Note that in Case 1a, since
no vertex is covered, sk′ is empty.

Case 2. The string sk′ consists of q copies of 0 followed by d copies of 1. For
example, the string Q for Figure 3.1 is

XIN HE, MING-YANG KAO, AND HSUEH-I LU 323

00︸︷︷︸ ∗ 0 ∗ ∗ 0 ∗ 0 ∗ 1000︸︷︷︸ ∗ ∗ 10001︸ ︷︷ ︸ ∗
↑ ↑ ↑ ↑ ↑ ↑
s1 s2 s4 s5 s6 s8

S2 is a binary representation of Q defined as follows. A step of Case 1 adds
one vertex to G and correspondingly includes one ∗ in Q; similarly, a step of Case
2 adds q + 1 vertices to G and includes one ∗ and q copies of 0 in Q. Since exactly
n − 2 vertices are added, the total number of these symbols is n − 2. Each symbol
in Q not yet counted corresponds to a vertex covered at the β steps. Since each vk
with 3 ≤ k ≤ n − 1 is covered at most once and v1, v2, vn are never covered, the
total number of these latter symbols is at most n − 3. Thus Q has at most 2n − 5
symbols. For the sake of unambiguous decoding, we pad Q with copies of 1 at its
end to have exactly 2n − 5 symbols. Since Q uses three distinct symbols, we treat
it as an integer of base 3 and convert it to a binary integer. Again, for the sake of
unambiguous decoding, we use exactly d(2n− 5) log 3e bits for this binary integer by
padding copies of 0 at its beginning. The resulting binary string is the desired S2.

For the sake of decoding, we also need to know whether any given sk′ is of Cases 1
or 2. Thus, let S3 = t1 · · · tβ , where tk′ = 1 if step k′ is of Case 1 and tk′ = 0 otherwise.
To save space, note that some bits tk′ can be deleted as follows without incurring
ambiguity. If step k′ is of Case 1a, tk′ is deleted because sk′ is empty and only a string
of Case 1a can be empty. If step k′ is of Case 1b, tk′ is deleted because sk′ starts with
1, while the strings of Case 2 start with 0. If step k′ is of Case 1c or 2, tk′ remains in
S3. For example, the string S3 for Figure 3.1 consists of t1 = 0, t2 = 0, t4 = 1, t5 = 0.
Thus, S3 has β1c + β2 bits, which can be bounded as follows. A step of Case 1 adds
one vertex into G and a step of Case 2 adds at least two vertices. Since n− 2 vertices
are added over the β steps, β1a + β1b + β1c + 2β2 ≤ n − 2. Since Scheme I assumes
β1b ≥ β1c, |S3| = β1c+β2 ≤ 1

2 ·(β1b+β1c) +β2 ≤ 1
2 ·(β1a+β1b+β1c+ 2β2) ≤ 0.5n−1.

Since S = S1//S2//S3, |S| ≤ 2(n−1)+d(2n−5) log 3e+0.5n−1 ≤ (2.5+2 log 3)n−
9 bits. This completes the description of the encoding procedure of Scheme I.

Next we describe how to decode S to reconstruct G. This decoding assumes that
both S and n are given. Thus, we can uniquely determine S1, S2, and S3. Then we
convert S2 to Q. From Q we can recover all sk′ with 1 ≤ k′ ≤ β. From S3 and all
sk′ , we can recover all tk′ with 1 ≤ k′ ≤ β. From S1, we reconstruct T . From T ,
we find the ordering v1, . . . , vn. Afterwards, we draw the edge (v1, v2) and perform
a loop of steps as follows. Each step is indexed by k′ and corresponds to step k′ of
reconstructing G using the right-most canonical ordering.

If tk′ = 1, step k′ is of Case 1. Thus, a vertex vk is added at this step, where
vk is the smallest ordered vertex not added into the current graph yet. From T , we
can determine the left-most neighbor c` of vk in the contour Hk−1 because c` is the
parent of vk in T . From sk′ , we know the number of vertices covered by vk and hence
the right-most neighbor cr of vk in the contour Hk−1. From sk′ , we also know which
of the covered vertices are connected to vk. These corresponding edges are added to
G.

If tk′ = 0, step k′ is of Case 2. Thus, a chain vk, . . . , vk+q is added at this step,
where vk is the smallest ordered vertex not added into the current graph yet. The
integer q can be determined from the string sk′ by counting its leading copies of 0.
From sk′ , we also know the number of vertices covered at step k′, which is the count
of 1 in sk′ . Thus, we know the neighbor cr of vk+q in the contour Hk−1. The chain
is added accordingly.

This completes the decoding procedure of Scheme I. It is straightforward to im-

324 LINEAR-TIME SUCCINCT ENCODINGS OF PLANAR GRAPHS

plement the whole Scheme I in O(n) time. If β1b < β1c, we use Scheme II to encode G,
which is identical to Scheme I with the following differences. If step k′ is of Case 2, sk′
consists of q copies of 1 followed by d copies of 0. Also, all bits tk′ for steps of Cases
1a and 1c are omitted from S3 without incurring ambiguity since their corresponding
strings sk′ are either empty or start with 0, while the strings of Cases 1b and 2 start
with 1. We use one extra bit to encode whether we use Scheme I or II. Thus we have
the following lemma.

Lemma 3.2. Any triconnected plane graph with n vertices can be encoded using
at most (2.5 + 2 log 3)n − 8 bits. Both encoding and decoding take O(n) time. The
decoding procedure assumes that both S and n are given.

We can improve Lemma 3.2 as follows. Let G∗ be the dual of G. G∗ has f vertices,
m edges and n faces. Since G is triconnected, G∗ is also triconnected. Furthermore,
if n > 3, then f > 3 and G∗ has no self-loop nor multiple edge. Thus, we can use the
coding scheme of Lemma 3.2 to encode G∗ with at most (2.5+2 log 3)f−8 bits. Since
G can be uniquely determined from G∗, to encode G, it suffices to encode G∗. To make
S shorter, for the case n > 3, if n ≤ f , we encode G using at most (2.5 + 2 log 3)n− 8
bits; otherwise, we encode G∗ using at most (2.5+2 log 3)f−8 bits. This new encoding
has at most (2.5 + 2 log 3) min{n, f} − 8 bits. Since min{n, f} ≤ n+f

2 , the bit count
is at most (1.25 + log 3)m − 2 by Euler’s formula n + f = m + 2. For the sake of
decoding, we use one extra bit to denote whether we encode G or its dual. Note that
if n = 3, we can simply encode G using zero bit without ambiguity. Thus we have
proved the following theorem.

Theorem 3.3. Any triconnected plane graph with n vertices, m edges and f faces
can be encoded using at most (2.5 + 2 log 3) min{n, f} − 7 ≤ (1.25 + log 3)m− 1 bits.
Both encoding and decoding take O(n) time. The decoding procedure assumes that S
is given together with n or f as appropriate.

Remark. There are several ways to improve this coding scheme so that the de-
coding does not require n as input. One is to use well-known data compression
techniques to encode n and append it to the beginning of S using logn+O(log logn)
bits [1, 5]. Another is to pad S with copies of 1 at its end so that it has exactly
d(2.5+2 log 3) min{n, f}e−7 bits. Then, since 2.5+2 log 3 > 1, given S alone, we can
uniquely determine n or f and proceed with the original decoding procedure. With
the strings sk′ , we can unambiguously identify the padded bits.

4. Open problems. This paper leaves several problems open. Since plane tri-
angulations are useful in many application areas, it would be particularly helpful to
encode them in O(n) time using close to 1.08m bits. Similarly, it would be significant
to obtain a linear-time coding scheme for triconnected plane graphs using close to 2m
bits. Note that Tutte [23] proved an information-theoretic tight bound of 2m+ o(m)
bits for triconnected plane graphs that may contain multiple edges and self-loops.
More generally, it would be of interest to encode graphs in a given family in polyno-
mial time using their information-theoretic minimum number of bits. Solving these
problems will most likely lead to the discovery of new structural properties of graphs.

Acknowledgment. The authors are grateful to anonymous referees for helpful
comments.

REFERENCES

[1] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

XIN HE, MING-YANG KAO, AND HSUEH-I LU 325

[2] C. Berge, Graphs, 2nd ed., North-Holland, New York, NY, 1985.
[3] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,

Cambridge, MA, 1990.
[4] H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combi-

natorica, 10 (1990), pp. 41–51.
[5] P. Elias, Universal codeword sets and representations of the integers, IEEE Trans. Inform.

Theory, IT-21 (1975), pp. 194–203.
[6] H. Galperin and A. Wigderson, Succinct representations of graphs, Inform. and Control, 56

(1983), pp. 183–198.
[7] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[8] A. Itai and M. Rodeh, Representation of graphs, Acta Inform., 17 (1982), pp. 215–219.
[9] G. Jacobson, Space-efficient static trees and graphs, in Proceedings of the 13th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), IEEE Press, Washington, DC,
1989, pp. 549–554.

[10] S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, SIAM J. Discrete
Math., 5 (1992), pp. 596–603.

[11] G. Kant, Drawing planar graphs using the lmc-ordering, in Proceedings of the 33rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Press, Washington,
DC, 1992, pp. 101–110.

[12] G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications in
graph drawing problems, Theoret. Comput. Sci., 172 (1997), pp. 175–193.

[13] M. Y. Kao, M. Fürer, X. He, and B. Raghavachari, Optimal parallel algorithms for straight-
line grid embeddings of planar graphs, SIAM J. Discrete Math., 7 (1994), pp. 632–646.

[14] M. Y. Kao, N. Occhiogrosso, and S. H. Teng, Simple and efficient compression schemes
for dense and complement graphs, J. Combin. Optim., (1999), to appear.

[15] K. Keeler and J. Westbrook, Short encodings of planar graphs and maps, Discrete Appl.
Math., 58 (1995), pp. 239–252.

[16] L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional
Conference Series in Appl. Math. 50, SIAM, Philadelphia, PA, 1986.

[17] J. I. Munro and V. Raman, Succinct representation of balanced parentheses, static trees and
planar graphs, in Proceedings of the 38th Annual IEEE Symposium on the Foundations of
Computer Science (FOCS), IEEE Press, Washington, DC, 1997, pp. 118–126.

[18] M. Naor, Succinct representations of general unlabeled graphs, Discrete Appl. Math., 28 (1990),
pp. 303–307.

[19] C. H. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs,
Inform. and Control, 71 (1986), pp. 181–185.

[20] W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the 1st Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1990, pp. 138–148.

[21] G. Turán, On the succinct representation of graphs, Discrete Appl. Math., 8 (1984), pp. 289–
294.

[22] W. T. Tutte, A census of planar triangulations, Canad. J. Math., 14 (1962), pp. 21–38.
[23] W. T. Tutte, A census of planar maps, Canad. J. Math., 15 (1963), pp. 249–271.

