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REPLACEMENT PATHS VIA ROW MINIMA OF CONCISE
MATRICES∗

CHENG-WEI LEE† AND HSUEH-I LU‡

Abstract. Matrix M is k-concise if the finite entries of each column of M consist of k or
fewer intervals of identical numbers. We give an O(n + m)-time algorithm to compute the row
minima of any O(1)-concise n×m matrix. Our algorithm yields the first O(n+m)-time reductions
from the replacement-paths problem on an n-node m-edge undirected graph (respectively, directed
acyclic graph) to the single-source shortest-paths problem on an O(n)-node O(m)-edge undirected
graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem
is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic
graphs. Moreover, our linear-time reductions lead to the first O(n + m)-time algorithms for the
replacement-paths problem on the following classes of n-node m-edge graphs: (1) undirected graphs
in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed
graphs, and (4) directed acyclic graphs.
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1. Introduction. Computing a shortest path between two nodes in a graph is
one of the most fundamental algorithmic problems in computer science. The variant
of the shortest-path problem which asks for a shortest path between two nodes that
avoids a failed node or edge has also been extensively studied in the last few decades.
Let G be a graph. For any node v of G, let G − v denote the graph obtained from
G by deleting v and its incident edges. For any edge e of G, let G − e denote
the graph obtained from G by deleting e. For any subgraph G′ of G, let w(G′) be
the sum of edge weights of G′. An rs-path is a path from node r to node s. The
distance dG(r, s) from r to s in G is the minimum of w(P ) over all rs-paths P of
G. A shortest rs-path P of G satisfies w(P ) = dG(r, s). We study the following
two versions of the replacement-paths problem on G with respect to a given shortest
rs-path P of G:

• The edge-avoiding version computes dG−e(r, s) for all edges e of P .
• The node-avoiding version computes dG−v(r, s) for all nodes v of P other
than r and s.

The edge-avoiding version can be reduced in linear time to the node-avoiding version:
Let G′ be the graph obtained from G by subdividing each edge xy of P into two edges
xv and vy with w(xv) = w(vy) = w(xy)/2. We have dG−xy(r, s) = dG′−v(r, s). No
linear-time reduction for the other direction is known. See, e.g., [21, 9, 31] for appli-
cations of the problem. Extensive surveys of the long history of algorithms and appli-
cations of this problem can be found in [14, 35]. We show that the replacement-paths
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problem on an n-node m-edge undirected graph can be reduced in O(n + m) time
to the single-source shortest-paths problem on an O(n)-node O(m)-edge undirected
graph.

Theorem 1.1. Let G be an n-node m-edge undirected graph. Let P be a given
shortest rs-path of G, where r and s are two distinct nodes of G. Given distances
dG(r, v) and dG(v, s) for all nodes v of G, we have the following statements:

1. It takes O(n+m) time to solve the edge-avoiding replacement-paths problem
on G with respect to P .

2. The node-avoiding replacement-paths problem on G with respect to P can be
reduced in O(n + m) time to the problem of computing distances dG0(r0, v)
for some node r0 and all nodes v of an O(n)-node O(m)-edge undirected
graph G0.

Combining with Dijkstra’s single-source shortest-paths algorithm (see, e.g., [12]),
Theorem 1.1 solves the replacement-paths problem in O(m+ n logn) time, matching
the best known result for the edge-avoiding version of Malik, Mittal, and Gupta [26]
and that for the node-avoiding version of Nardelli, Proietti, and Widmayer [30].
Combining with the algorithm of Henzinger et al. [19], Theorem 1.1 yields an O(n+
m)-time algorithm for both versions of the problem on planar graphs, while O(n+m)-
time algorithms on planar graphs were known only for the edge-avoiding version (see
Bhosle [7]). Combining with the algorithm of Tazari and Müller-Hannemann [36],
Theorem 1.1 leads to the first O(n + m)-time algorithm on minor-closed graphs.
Combining with the algorithms of Thorup [38, 37], Theorem 1.1 solves both versions
of the problem in O(n+m) time in the word-RAM model of computation, improving
upon the O(m · α(m,n))-time transmuter-based algorithm of Nardelli, Proietti, and
Widmayer [29], which works only for the edge-avoiding version. See [32] for more
results of the single-source shortest-paths problem that can be combined with our
reductions to yield efficient algorithms for the replacement-paths problem.

Our proof of Theorem 1.1 also holds for directed acyclic graphs. Since the single-
source shortest-paths problem can be solved in linear time on directed acyclic graphs
(see, e.g., [12]), we solve both versions of the replacement-paths problem on any n-
node m-edge directed acyclic graph in O(n+m) time, improving upon the algorithm
of Bhosle [7] for the edge-avoiding version, which runs in O(m+ n · α(2n, n)) time in
the word-RAM model of computation and runs in O(m · α(m,n)) time in general.

Theorem 1.2. For any two nodes r and s of an n-node m-edge directed acyclic
graph G, it takes O(n + m) time to solve the replacement-paths problem on G with
respect to any given shortest rs-path of G.

Table 1.1 compares our results with previous work.

Table 1.1

Previous work and our results on the replacement-paths problem.

Edge-avoiding version Node-avoiding version Ours

Directed graph O(mn+ n2 log logn) [17] O(mn+ n2 logn) [12]

Directed acyclic graph O(m + n · α(m,n)) [7] O(m+ n)

Directed acyclic graph (RAM) O(m+ n · α(2n, n)) [7] O(m+ n)

Undirected graph O(m+ n logn) [26] O(m+ n logn) [30] O(m+ n logn)

Undirected graph (RAM) O(m · α(m,n)) [29] O(m+ n)

Undirected planar graph O(n) [7] O(n)

Undirected minor-closed graph O(n)
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1.1. Technical overview. A matrix M is k-concise if the finite entries of each
column of M consist of k or fewer intervals of identical numbers. A 1-concise matrix is
concise. Figure 1.1(a) shows a concise matrix. Figure 1.1(b) shows a 2-concise matrix.
A k-concise matrix may not be sparse, but each column of a k-concise matrix can be
concisely represented by O(k) numbers, i.e., three numbers for each of the k or fewer
intervals of identical finite numbers: (a) the starting row index, (b) the ending row
index, and (c) the identical number of the interval. For instance, the columns with
indices v6v5, v7v4, and v9v5 of the 2-concise matrix in Figure 1.1(b) can be represented
by 〈1, 1, 13; 2, 4, 12〉, 〈2, 2, 20; 3, 3, 16〉, and 〈3, 3, 19; 4, 4, 9〉, respectively. Throughout
the paper, all matrices are in this concise representation. The row-minima problem
on a matrix M is to compute the minimum of each row of M . We show that the
replacement-paths problem on an n-node m-edge undirected (respectively, directed
acyclic) graph can be reduced in O(n + m) time to the row-minima problem on a
2-concise n × m matrix obtainable from the solution to the single-source shortest-
paths problem on an O(n)-node O(m)-edge undirected (respectively, directed acyclic)
graph. (See Lemma 2.1 in section 2.1 for the edge-avoiding version and Lemma 2.2 in
section 2.2 for the node-avoiding version.) Our reductions exploit the structure prop-
erties of replacement paths studied by, e.g., Malik, Mittal, and Gupta [26], Nardelli,
Proietti, and Widmayer [30, 29], and Bhosle [7]. To show that the replacement-paths
problem is no harder than the single-source shortest-paths problem, we give the first
O(n + m)-time algorithm for the row-minima problem on any O(1)-concise n × m
matrix (see Lemma 3.1 in section 3). As illustrated by Figure 1.2, for any k-concise
n×m matrix N with k = O(1), it takes O(m) time to derive concise n×m matrices
N1, N2, . . . , Nk whose entrywise minimum is N . Thus, the main technical challenge
lies in computing the row minima of an n×m concise matrixM in O(n+m) time. The
rest of the overview elaborates on our O(n +m)-time algorithm for the row-minima
problem on any concisely represented n×m concise matrix M .

The thickness θ of M is the length of a longest interval of identical finite entries
over all columns of M . For instance, the thickness of the matrix in Figure 1.1(a)
(respectively, Figures 1.2(a) and 1.2(b)) is 4 (respectively, 2 and 3). The broadness

M v0v6 v0v8 v6v7 v6v5 v7v4 v9v5

1 13 15
2 15 18 12
3 15 12 16
4 12 16 9
5 12 9

(a)

N v0v8 v6v7 v6v5 v7v4 v9v5

1 15 19 13
2 15 12 20
3 12 16 19
4 12 9

(b)

Fig. 1.1. (a) A concise 5× 6 matrix M . (b) A 2-concise 4× 5 matrix N . The ∞-entries in M
and N are left out.

N1 v0v8 v6v7 v6v5 v7v4 v9v5

1 15 19 13
2 15 20
3 19
4

(a)

N2 v0v8 v6v7 v6v5 v7v4 v9v5

1
2 12
3 12 16
4 12 9

(b)

Fig. 1.2. Two concise 4 × 5 matrices N1 and N2 whose entry-wise minimum is the 2-concise
4× 5 matrix N of Figure 1.1(b). The ∞-entries of N1 and N2 are left out.
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β of M is the minimum of (i) the number of distinct starting row indices for the
intervals of finite entries over all columns of M , and (ii) the number of distinct ending
row indices for the intervals of finite entries over all columns of M . For instance, the
broadness of the matrix in Figure 1.1(a) (respectively, Figures 1.2(a) and 1.2(b)) is 4
(respectively, 3 and 2). The row minima of M can be computed in O(n+m+ θ · β)
time by Lemma 3.4 in section 3.1. The thickness and broadness of M can both be as
large as n, so applying Lemma 3.4 on M may require Ω(n2) time. Our O(n+m)-time
algorithm is based upon the technique of deriving matrices with smaller thickness
or broadness whose row minima yield the row minima of M . (Details are in the
proofs of Lemma 3.1 in section 3.3 and Lemma 3.5 in section 3.1.) Specifically,
we derive four n-row matrices M0,M1,M2,M3 from M according to some positive
integral brush factor h such that the row minima of M is the entrywise minima of
the row minima of the four matrices. A column of M is h-brushed if it contains at
least one finite entry in rows h, 2h, . . . , �n

h � ·h. For instance, all columns of the matrix
in Figure 1.3(a) are 3-brushed. Matrix M0 is the submatrix of M induced by the
non-h-brushed columns. See Figure 1.4(a) for a matrix M0 that has no 3-brushed
columns. Matrices M1, M2, and M3 represent the h-brushed columns of M : Matrix
M1 takes over the first h or less finite entries of each h-brushed column of M up
to the first row with a finite entry whose index is an integral multiple of h; matrix
M3 takes over the last h − 1 or less finite entries of each h-brushed column of M
starting from the row with a finite entry that immediately succeeds the last row
whose index is an integral multiple of h; and matrix M2 takes over the finite entries of
each h-brushed column in between. The entrywise minimum of matrices M1, M2, and
M3 is the submatrix of M induced by the h-brushed columns. See Figures 1.3(b)–
1.3(d) for M1, M2, and M3 obtained from M in Figure 1.3(a) with brush factor
h = 3. Matrices M1 and M3 have thickness O(h) and broadness O(nh ), so the row
minima of M1 and M3 can be computed in O(n + m) time by Lemma 3.4 for any
choice of h. In order to compute the row minima of M0 and M2 in O(n +m) time,
we let h = Θ(log logn) and resort to two intermediate algorithms for row-minima
problem. As to be explained in the next two paragraphs, we (1) apply the first
intermediate algorithm on an O(nh )-row O(m)-column matrix obtained from M2 by
condensing its identical rows and (2) apply the second intermediate algorithm onO(h)-

M 1 2 3 4 5 μ q z

1 9 9 9 1
2 9 7 7 7 1
3 9 7 5 5 5 1
4 7 5 5 0
5 7 5 6 5 0
6 7 5 6 5 0
7 7 5 6 8 5 0
8 7 5 6 8 5 0
9 7 6 8 6 6 1
10 6 8 6 0
11 8 8 8 1

(a)

M1 1 2 3 4 5

1 9
2 9 7
3 9 7 5
4
5 6
6 6
7 8
8 8
9 8
10
11

(b)

M2 2 3 4

1
2
3
4 7 5
5 7 5
6 7 5
7 7 6
8 7 6
9 7 6
10
11

(c)

M3 3 4 5

1
2
3
4
5
6
7 5
8 5
9
10 6 8
11 8

(d)

Fig. 1.3. Each column of matrix M is 3-brushed. The minima array μ of M and its corre-
sponding query array q and auxiliary binary string z are displayed to the right of M . The entries
of q that do not matter are left out. Matrix M1 has thickness 3 and broadness 3. Every three
consecutive rows of M2 are identical. Matrix M3 has thickness 2 and broadness 2. The ∞-entries
in these four matrices are left out. Matrix M1 has no all-∞ columns. The all-∞ columns of M2

and M3 are omitted.
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M0 1 2 3 4 5

1 9
2 9
3
4 7 5
5 5
6
7 6
8
9
10 8
11 8

(a)

M1 1

1 9
2 9

(b)

M2 2 3

4 7 5
5 5

(c)

M3 4

7 6
8

(d)

M4 5

10 8
11 8

(e)

Fig. 1.4. M0 has no 3-brushed columns. The row minima of M0 can be obtained from combining
the row minima of M1, M2, M3, and M4. The ∞-entries in the matrices are left out.

row matrices derived from M0 whose overall number of rows (respectively, columns)
is O(n) (respectively, O(m)).

The broadness of the matrix M2 obtained in the previous paragraph is O(nh ).
Although the thickness of M2 could be Ω(n), every h consecutive rows of M2 are
identical. See Figure 1.3(c) for an example of M2 with h = 3. We condense ma-
trix M2 into an O(nh )-row O(m)-column matrix M∗. By h = Θ(log log n), it takes
O(n + m) time to compute the row minima of M2 by applying our first interme-
diate algorithm (see Lemma 3.2 in section 3.1) on the condensed matrix M∗. For
the rest of the paragraph, let M (with slight abuse of notation) be the input n ×m
matrix of this O(m + n log log n)-time intermediate algorithm, which is based upon
the above technique of reducing thickness and broadness in a more complicated man-
ner. We first partition M into submatrices M1,M2, . . . ,M� with � = O(log logn) in
O(m + n log logn) time. Specifically, let h0, h1, . . . , h� be a decreasing sequence of
positive integers such that h0 ≥ n, h1 < n, h� = 1, and hk−1 = Θ(h2

k) holds for each
k = 1, 2, . . . , �. Let Mk be the submatrix of M induced by the hk-brushed columns
that are not hk−1-brushed, implying that Mk has thickness O(hk−1) = O(h2

k). For
each n ×mk matrix N = Mk with 1 ≤ k ≤ �, we derive three n × mk matrices N1,
N2, and N3 with brush factor h = hk (again, as in the proof of Lemma 3.5 in section
3.1 and as illustrated by Figure 1.3). Both N1 and N3 have thickness O(hk) and
broadness O( n

hk
). Since every hk consecutive rows of N2 are identical and N2 are

not hk−1-brushed, we condense N2 into an O( n
hk

)-row mk-column matrix N∗ with

thickness O(hk) and broadness O( n
hk

). The row minima of N1, N∗, and N3 can

be computed in O(n + mk) time by Lemma 3.4. The row minima of Mk = N can
be obtained from those of N1, N∗, and N3 in O(n) time. Taking entrywise min-
ima on the row minima of M1,M2, . . . ,M�, we have the row minima of M in time∑

1≤k≤� O(mk + n) = O(m+ n log logn).

The thickness of the matrix M0 obtained in the paragraph preceding the previous
paragraph is O(h). Since M0 has no h-brushed columns, one can partition the finite
entries of M0 into O(h)-row matrices M1,M2, . . . ,M� with � = O(nh ) whose overall
number of columns is O(m). See Figure 1.4 for an illustration. (Details are in the
proof of Lemma 3.1 in section 3.3.) Recursively applying the procedure described in
the previous two paragraphs on M1, . . . ,M� would only lead to an O((m+n) log∗ n)-
time algorithm. Instead, by h = Θ(log logn), the row minima of each O(h)-row
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mk-column matrix Mk can be computed in O(mk + log logn) time by our second
intermediate algorithm (i.e., Algorithm 1 in Figure 3.2 in the proof of Lemma 3.6
in section 3.2). Putting together the row minima of M1,M2, . . . ,M�, we solve the
row-minima problem on M0 in time

∑
1≤k≤� O(mk + log logn) = O(m + n). This

O(mk + log logn)-time intermediate algorithm for the row-minima problem on any
O(log logn)-row mk-column matrix Mk proceeds iteratively with the help of two data
structures. For each j = 1, 2, . . . ,mk, at the end of the jth iteration, the first data
structure keeps the minimum of the first j columns of each row in a concise manner
such that the minima of consecutive rows can be efficiently updated. Specifically,
let μ(i) be the minimum of the first j entries of row i. An array q and a binary
string z satisfying q(pred(z, i)) = μ(i) for all row indices i are used to represent array
μ, where pred(z, i) denotes the largest index i1 with i1 ≤ i and z(i1) = 1. The
value of μ(i) can be obtained from q(pred(z, i)). Updating μ(i) for all indices i with
pred(z, i) = i1 to a smaller value can be done by decreasing q(i1). See Figure 1.3(a)
for an example of μ, q, and z with j = 5. If the index pred(z, i) for each i were
O(1)-time computable and the value of z(i) for each i were O(1)-time updatable,
then our Algorithm 1 in Figure 3.2 in section 3.2 would have been an O(n + m)-
time algorithm for the row-minima problem on any n × m matrix. However, it is
impossible in general to come up with a polynomial-sized dynamic data structure for
binary string z that supports both O(1)-time update on z(i) and O(1)-time query
pred(z, i) [4]. Fortunately, the binary string z needed to represent the minima array
μ of the O(h)-row matrix Mk has only O(h) = O(log logn) bits. Thus, one can
precompute all possible updates and queries on z in o(n) time and organize all the
precomputed information in an o(n)-space table capable of supporting each query and
update on z in O(1) time. With the help of this second data structure, our second
intermediate algorithm computes the row minima of each Mk with 1 ≤ k ≤ � in
O(mk + log logn) time.

1.2. Related work. On directed graphs with nonnegative weights, Gotthilf and
Lewenstein [17] gave the best known algorithm, running in O(mn+n2 log logn) time,
for the edge-avoiding version of the replacement-paths problem. The O(mn+n2 logn)-
time algorithm of running Dijkstra’s O(m + n logn)-time algorithm for O(n) times
remains the best known algorithm for the node-avoiding version. Bernstein [5] gave
an algorithm to output (1 + ε)-approximate solutions for both versions of the prob-
lem for any positive parameter ε. Hershberger, Suri, and Bhosle [22] showed a
lower bound Ω(m

√
n) on the time complexity of the problem in the path-comparison

model of Karger, Koller, and Phillips [24]. The randomized algorithm of Roditty
and Zwick [35] on unweighted directed graphs runs in Õ(m

√
n) time. On directed

graphs with integral weights in {−W, . . . ,W}, Weimann and Yuster [41, 42] gave an
Õ(Wnω + W 2/3n1+2ω/3)-time randomized algorithm for both versions of the prob-
lem, where ω is the infimum of all numbers such that multiplying two n × n matri-
ces takes Õ(nω) time. The running time was improved to Õ(Wnω) by Vassilevska
Williams [39], who [40] recently reduced the long-standing upper bound on ω of
Coppersmith and Winograd [11] from ω < 2.376 to ω < 2.3727. Recently, Grandoni
and Vassilevska Williams [18] addressed the single-source version of the problem.
On directed planar graphs with nonnegative weights, the algorithm of Wulff-Nilsen
[43] runs in O(n logn) time, improving on the O(n log3 n)-time algorithm of Emek,
Peleg, and Roditty [14] and the O(n log2 n)-time algorithm of Klein, Mozes, and
Weimann [25]. Erickson and Nayyeri [16] extended Wulff-Nilsen’s result on bounded-
genus graphs.
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Bernstein and Karger [6] addressed the all-pairs replacement-paths problem by
giving an Õ(n2)-space Õ(mn)-time data structure capable of answering dG−v(r, s) for
any nodes r, s, and v of directed graph G in O(1) time. Baswana, Lath, and Mehta [3]
studied the single-source and all-pairs replacement-paths problems on directed planar
graphs. Malik, Mittal, and Gupta [26] studied replacement paths that avoid multiple
failed edges. Duan and Pettie [13] studied replacement paths that avoid two failed
nodes or edges. Weimann and Yoster [42] studied replacement paths that avoid mul-
tiple failed nodes and edges. Chechik et al. [10] studied near optimal replacement
paths that avoid multiple failed edges.

For the closely related problem of finding k shortest rs-paths for any given nodes r
and s of directed graph G with nonnegative edge weights, Eppstein [15] gave an O(m+
n logn+ k)-time algorithm, which may output nonsimple paths. If the output paths
are required to be simple, the best currently known algorithm, also due to Gotthilf and
Lewenstein [17], uses replacement paths. Specifically, Roditty and Zwick [35] showed
that the problem can be reduced to O(k) computations of the second shortest simple
rs-path. Therefore, the replacement-paths algorithm of Gotthilf and Lewenstein yields
an O(kmn+kn2 log logn)-time algorithm for the problem of finding k shortest simple
paths. See [34, 5, 20] for more results on this related problem. See [25, 2, 1, 28,
27, 8, 33, 23] for results involving the row-minima problem on matrices with special
structures.

1.3. Road map. The rest of the paper is organized as follows. Section 2 gives
the preliminaries, including our O(n + m)-time reductions for both versions of the
replacement-paths problem on an n-node m-edge undirected graph to (1) the row-
minima problem on O(1)-concise n ×m matrices and (2) the single-source shortest-
paths problem on O(n)-node O(m)-edge undirected graphs. Both reductions also
work for directed acyclic graphs. Section 3 gives our O(n + m)-time algorithm for
the row-minima problem on any O(1)-concise n×m matrix and proves Theorems 1.1
and 1.2. Section 4 concludes the paper.

2. Preliminaries. Let |S| denote the cardinality of set S. A row (respectively,
column) of a matrix is dummy if all its entries are ∞. Given distances dG(r, v) for all
nodes v of an n-node m-edge graph G, a shortest-paths tree T in G rooted at r that
contains the given shortest rs-path P can be obtained in O(m + n) time. Let p be
the number of edges in P . Let v0, v1, . . . , vp be the nodes of P from r = v0 to s = vp.
For each i = 1, 2, . . . , p, let ei be edge vi−1vi. See Figures 2.1(a) and 2.1(b) for an
example of G, T , and P .

Subsection 2.1 gives our reduction for the edge-avoiding version. Subsection 2.2
gives our reduction for the node-avoiding version. Our reductions are presented in a
way that also works for directed acyclic graphs. The reductions for directed acyclic
graphs hold even with the existence of negative-weighted edges, while the reductions
for undirected graphs assume nonnegative edge weights. We comment on handling
negative weights for undirected graphs in section 4.

2.1. A reduction for the edge-avoiding version. For each node v of G, let
level λ(v) of v in T be the largest index i such that vi is on the path of T from r to
v. Levels λ(v) for all nodes v of G can be computed from T in O(n) time. For each
i = 1, 2, . . . , p,

• let Ri consist of the nodes x with λ(x) ≤ i− 1 and
• let R̄i consist of the nodes y with λ(y) ≥ i.
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6

v9v4

v8v3

v2

v1

v7v6

v0

3

3

9 7

3

2

8

V3

S3

R3

R̄3

5 91

2

1

1

3

e1

e2

e3

e5

e4

r

s8

67

0

31

8 8 4 6

s

(a) (b) (c)

r

4

3

0

1

4 6 6

5

8

7

2

v5

Fig. 2.1. (a) Graph G in which (v0, v1, . . . , v5) is a shortest rs-path P . (b) A shortest-paths
tree T of G rooted at r, in which P consists of edges e1, e2, . . . , e5. The number in each node is its
distance from r in G. (c) A shortest-paths tree T ′ of G rooted at s. The number in each node is its
distance to s in G.

That is, Ri (respectively, R̄i) consists of the nodes v that are reachable (respectively,
unreachable) from r in T − ei. See Figure 2.1(b) for an illustration of Ri and R̄i. For
any edge xy of G with λ(x) < λ(y), define

replacement-cost1(x, y) = dG(r, x) + w(xy) + dG(y, s).

Since Ri and R̄i define a cut between nodes r and s, any rs-path of G contains some
edge xy with x ∈ Ri and y ∈ R̄i. We have

(2.1) dG−ei(r, s) = min{replacement-cost1(x, y) | x ∈ Ri, y ∈ R̄i, and xy ∈ G− ei}
for each i = 1, 2, . . . , p (see also, e.g., [29, 26]). The edge-replacement matrix of G
with respect to T and P is the p×m matrix M defined by

M(i, xy) =

{
replacement-cost1(x, y) if λ(x) < i ≤ λ(y) and ei �= xy,
∞ otherwise

for each i = 1, 2, . . . , p and each edge xy of G with λ(x) < λ(y). For instance, the
matrix in Figure 1.1(a) is the edge-replacement matrix of the graph G in Figure 2.1(a)
with respect to the tree T and path P in Figure 2.1(b), where the dummy columns
are omitted. Let G′ be the graph obtained from G by reversing the direction of each
edge of G. (This statement handles the case that G is a directed acyclic graph. For
the undirected case, we simply have G = G′.) The distances dG(v, s) for all nodes v
of G and a shortest-paths tree T ′ in G′ rooted at s can be obtained from each other
in O(m+ n) time. See Figure 2.1(c) for an example of T ′.

Lemma 2.1. The edge-replacement matrix M of G with respect to T and P is a
concise matrix whose concise representation can be obtained from G, P , T , and T ′ in
O(n+m) time. Moreover, for each i = 1, 2, . . . , p, the minimum of the ith row of M
equals dG−ei(r, s).

Proof. By definition of M , if the xyth column of M is not dummy, then λ(x) �=
λ(y). Let x and y be the endpoints of such an edge with λ(x) < λ(y). The entries of
the xyth column in rows λ(x) + 1, λ(x) + 2, . . . , λ(y) are all replacement-cost1(x, y).
The other entries are all ∞. Since each column of M consists of at most one in-
terval of identical finite numbers, M is concise. Given G, P , T , and T ′, values
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replacement-cost1(x, y) for all edges xy of G with λ(x) < λ(y) can be obtained in
overall O(n+m) time. Matrix M can be obtained from G, P , T , and T ′ in O(n+m)
time. The minimum of the ith row is the minimum of replacement-cost1(x, y) over all
edges xy of G with λ(x) < i ≤ λ(y) and ei �= xy. By definition of Ri and R̄i, edge xy
satisfies λ(x) < i ≤ λ(y) if and only if x ∈ Ri and y ∈ R̄i. By (2.1), the minimum of
the ith row of M is indeed dG−ei(r, s). The lemma is proved.

2.2. A reduction for the node-avoiding version. Observe that the level
λ(v) of node v in T is also the smallest index i such that v is reachable from r in
T − vi+1. For each i = 1, . . . , p− 1, let the nodes of G− vi be partitioned into Ri, Vi,
and Si, where

• Ri, as defined in section 2.1, consists of the nodes x with λ(x) ≤ i− 1,
• Vi consists of the nodes x �= vi with λ(x) = i, and
• Si consists of the nodes y with λ(y) > i.

See Figure 2.1(b) for an illustration of Ri, Vi, and Si, where Vi and Si are depicted by
lighter shaded regions. Since Ri ∪ Vi and Si define a cut for nodes r and s in G− vi,
each rs-path of G− vi contains some edge xy with x ∈ Ri ∪ Vi and y ∈ Si. For any
node subset U of G, let G[U ] denote the subgraph of G induced by U . We have

(2.2)

dG−vi(r, s) = min{dG[Ri∪Vi](r, x) + w(xy) + dG(y, s) | x ∈ Ri ∪ Vi, y ∈ Si, xy ∈ G}
= min{min{dG(r, x) + w(xy) + dG(y, s) | x ∈ Ri, y ∈ Si, xy ∈ G},

× min{dG[Ri∪Vi](r, x) + w(xy) + dG(y, s) | x ∈ Vi, y ∈ Si, xy ∈ G}},
where the first equality is proved by Nardelli, Proietti, and Widmayer [30, Lemma 3]
and the second equality follows from the observation that dG[Ri∪Vi](r, x) = dG(r, x)
holds for each node x ∈ Ri.

We now define a graph G0 and specify a node r0 of G0 such that

(2.3) dG[Ri∪Vi](r, x) = dG0(r0, x)

holds for each i = 1, 2, . . . , p − 1 and each node x ∈ Vi. For each i = 1, 2, . . . , p − 1,
let Gi be G[Vi] plus one new node ri and |Vi| new edges, where for each node x ∈ Vi

the xth new edge is rix with weight

w(rix) = min{dG(r, u) + w(ux) | u ∈ Ri, ux ∈ G}.
Let graph G0 be G1 ∪ G2 ∪ · · · ∪ Gp−1 plus a new node r0 and p − 1 zero-weighted
edges r0r1, r0r2, . . . , r0rp−1. G0 is the disjoint union of p − 1 induced subgraphs of
G plus a tree with internal nodes r0, r1, . . . , rp−1. For the case that G is a directed
acyclic graph, all edges of the tree are outgoing toward the disjoint union of the p− 1
induced subgraphs of G, which is acyclic. G0 has to be a directed acyclic graph. For
the case that G is planar, the disjoint union of the p − 1 induced subgraphs of G is
planar. If edge rix for some node x ∈ Vi has finite edge weight, x has at least one
neighbor of G in Ri. Although G0 may not be planar, the subgraph of G0 induced by
the edges with finite edge weights has to be planar. Let T0 be a shortest-paths tree
of G0 rooted at r0. See Figure 2.2 for an example. Observe that G0 is an O(n)-node
O(m)-edge graph, obtainable in O(n+m) time from G and T , such that (2.3) holds
for each i = 1, 2, . . . , p− 1. For any edge xy of G with λ(x) < λ(y), define

replacement-cost2(x, y) = dG0(r, x) + w(xy) + dG(y, s).
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Fig. 2.2. The graph G0 obtained from the graph G in Figure 2.1(a) and the tree T and path P
in Figure 2.1(b). The edges in thick lines form a shortest-paths tree T0 of G0 rooted at r0.

The node-replacement matrix of G with respect to T and P is the (p− 1)×m matrix
N defined by

N(i, xy)

⎧⎨
⎩
replacement-cost2(x, y) if λ(x) = i < λ(y) and x �= vi,
replacement-cost1(x, y) if λ(x) < i < λ(y) and x �= vi,
∞ otherwise

for each i = 1, 2, . . . , p− 1 and each edge xy of G with λ(x) < λ(y). For instance, the
matrix in Figure 1.1(b) is the node-replacement matrix of the graph G in Figure 2.1(a)
with respect to the tree T and path P in Figure 2.1(b), where the dummy columns
are omitted.

Lemma 2.2. The node-replacement matrix N of G with respect to T and P is a
2-concise matrix whose concise representation can be obtained from G, P , T , T ′, and
T0 in O(n +m) time. Moreover, for each i = 1, 2, . . . , p− 1, the minimum of the ith
row of N equals dG−vi(r, s).

Proof. By definition of N , if the xyth column of N with λ(x) ≤ λ(y) is not
dummy, then λ(x) + 1 ≤ λ(y). The entry of the xyth column in row λ(x) is
replacement-cost2(x, y). If λ(x) + 2 ≤ λ(y), the entries of the xyth column in rows
λ(x) + 1, λ(x) + 2, . . . , λ(y) − 1 are all replacement-cost1(x, y). The other entries of
the xyth column are all ∞. Since the finite entries of each column of N consist of at
most two intervals of identical numbers, N is 2-concise. Given G, P , T , T ′, and T0,
values replacement-cost1(x, y) and replacement-cost2(x, y) for all edges xy of G with
λ(x) < λ(y) can be obtained in overall O(n + m) time. Matrix N can be obtained
from G, P , T , T ′, and T0 in O(n +m) time. By (2.2) and (2.3), we have

dG−vi(r, s) = min{min{replacement-cost1(x, y) | x ∈ Ri, y ∈ Si, xy ∈ G},
min{replacement-cost2(x, y) | x ∈ Vi, y ∈ Si, xy ∈ G}}.

For each i = 1, . . . , p− 1, the minimum of the ith row of N is indeed dG−vi(r, s). The
lemma is proved.

3. The row minima of an O(1)-concise matrix in linear time. This section
proves Lemma 3.1. Theorem 1.1 follows immediately from Lemmas 2.1, 2.2, and 3.1.
Theorem 1.2 follows immediately from Lemma 3.1 and the analogous versions of
Lemmas 2.1 and 2.2 for directed acyclic graphs.

Lemma 3.1. It takes O(n +m) time to compute the row minima of a concisely
represented O(1)-concise n×m matrix.

As illustrated in Figure 1.2, a k-concise n ×m matrix M with k = O(1) can be
decomposed in O(m) time into k concise n×m matrices whose entry-wise minimum
is M . To prove Lemma 3.1, it suffices to solve the row-minima problem on any n×m
concise matrix in O(n+m) time. For the rest of the section, all matrices are concise.
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Each matrix M is concisely represented by arrays aM , bM , and cM such that for each
i = 1, 2, . . . , n and each j = 1, 2, . . . ,m, the (i, j)-entry of M can be determined in
O(1) time by

M(i, j) =

{
cM (j) if aM (j) ≤ i ≤ bM (j),
∞ otherwise.

For instance, if M is the matrix in Figure 1.3(a), then aM = (1, 2, 3, 5, 7), bM =
(3, 9, 8, 10, 11), and cM = (9, 7, 5, 6, 8). Subscripts M in aM , bM , and cM can be
omitted if matrix M is clear from the context.

Subsection 3.1 proves Lemma 3.2, which states an O(m + n log logn)-time al-
gorithm for solving the row-minima problem on any n × m matrix. Subsection 3.2
proves Lemma 3.6, which states an O(m + log logn)-time algorithm for solving the
row-minima problem on any O(log logn) ×m matrix, with the help of an O(n)-time
precomputable O(n)-space data structure that supports O(1)-time queries and up-
dates on any O(log logn)-bit binary string. Subsection 3.3 proves Lemma 3.1 using
Lemmas 3.2 and 3.6.

3.1. A near-linear-time intermediate algorithm. This subsection proves
Lemma 3.2, which requires Lemmas 3.3, 3.4, and 3.5.

Lemma 3.2. It takes O(m + n log logn) time to compute the row minima of an
n×m matrix.

An n×m matrix M is sorted if the following properties hold, where (a) Mi is the
submatrix of M induced by the columns whose indices j satisfy aM (j) = i, and (b)
mi is the number of columns in Mi.

Property S1: aM (1) ≤ aM (2) ≤ · · · ≤ aM (m).
Property S2: bMi(1) ≤ bMi(2) ≤ · · · ≤ bMi(mi) holds for each i = 1, . . . , n.

That is, if M is sorted, then

(aM (1), bM (1)), (aM (2), bM (2)), . . . , (aM (m), bM (m))

are in lexicographically nondecreasing order. For instance, the matrices M in Fig-
ures 1.1(a) and 1.3(a), the matrixM0 in Figure 1.4(a), and the matrixM9 in Figure 3.1
are sorted. The matrix N1 in Figure 1.2 is not sorted, since the column with index
v0v8 is not the third column.

Lemma 3.3. It takes O(n+m) time to reorder the columns of an n×m matrix
such that the resulting matrix is sorted.

Proof. Since a(j) and b(j) for all indices j = 1, 2, . . . ,m are positive integers in
{1, 2, . . . , n}, the lemma is straightforward by counting sort (see, e.g., [12]).

M9 1 2 3 4 5 6 7 8 9 10 row minimum

9 3 95 25 66 32 76 51 88 76 81 3
10 95 25 66 32 76 51 88 76 81 25
11 25 66 32 76 51 88 76 81 25
12 66 32 76 51 88 76 81 32
13 32 76 51 88 76 81 32
14 32 76 51 88 76 81 32
15 76 51 88 76 81 51
16 88 76 81 76
17 76 81 76

Fig. 3.1. A sorted n-row mi-column thickness-θ matrix Mi with n = 17, i = 9, mi = 10, and
θ = 9. The dummy rows of Mi are omitted. The ∞-entries are left out. The italic entries form the
lower-left boundary of the finite entries.
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Define

thickness(M) = max{bM(j)− aM (j) + 1 | 1 ≤ j ≤ m};
broadness(M) = min{|{aM (1), aM (2), . . . , aM (m)}|, |{bM (1), bM (2), . . . , bM (m)}|}.

We have thickness(M) = broadness(M) = 4 for the matrix M in Figure 1.1(a) and
thickness(M9) = 9 and broadness(M9) = 1 for the matrix M9 in Figure 3.1.

Lemma 3.4. It takes O(n +m + thickness(M) · broadness(M)) time to compute
the row minima of an n×m matrix M .

Proof. Let θ = thickness(M) and β = broadness(M). Subscripts M of aM
and bM in the proof are omitted. We prove the lemma for the case with β =
|{a(1), a(2), . . . , a(m)}|. The case with β = |{b(1), b(2), . . . , b(m)}| can be proved
by reversing the row order of M . We first apply Lemma 3.3 to have M sorted in
O(n +m) time. For each i = 1, 2, . . . , n, let Mi be the submatrix of M induced by
columns whose indices j satisfy a(j) = i. Let mi be the number of columns in Mi.
For each of the β indices i with mi ≥ 1, the nondummy rows of submatrix Mi are all
in rows i, i+ 1, . . . , i+ θ − 1. Since a(j) = i holds for all column indices j of Mi, the
sequence of minima of rows i, i + 1, . . . , i + θ − 1 of Mi is nondecreasing. By Prop-
erty S2 of M , the minima of the θ or fewer nondummy rows of Mi can be computed in
O(mi + θ) time by a right-to-left and bottom-up traversal of the lower-left boundary
of the finite entries. See Figure 3.1 for an illustration. The row minima of M can
be obtained from the row minima of the nondummy rows of the β matrices Mi with
mi ≥ 1 in O(n + θ · β) time. The row-minima problem on M can thus be solved in
O(n+m+ θ · β) time. The lemma is proved.

For any positive integer h, we say that the jth column of M is h-brushed if
interval [aM (j), bM (j)] contains at least one integral multiple of h. It takes O(1) time
to determine from aM (j) and bM (j) whether the jth column ofM is h-brushed or not.

Lemma 3.5. If M is an n × m matrix whose columns are all h-brushed, then
the row-minima problem on M can be reduced in O(n +m) time to the row-minima
problem on an O(nh ) ×m matrix M∗ with thickness(M∗) = O( 1h · thickness(M)) and
broadness(M∗) = O(nh ).

Proof. Let M1, M2, and M3 be the following three n × m matrices, obtainable
from M in O(m) time, whose entrywise minimum is M . For each i = 1, 2, . . . , n and
each j = 1, 2, . . . ,m, let

M1(i, j) =

{
M(i, j) if aM (j) ≤ i ≤ h ·

⌈
aM (j)

h

⌉
,

∞ otherwise,

M2(i, j) =

{
M(i, j) if h ·

⌈
aM (j)

h

⌉
+ 1 ≤ i ≤ h ·

⌊
bM (j)

h

⌋
,

∞ otherwise,

M3(i, j) =

{
M(i, j) if h ·

⌊
bM (j)

h

⌋
+ 1 ≤ i ≤ bM (j),

∞ otherwise.

See Figure 1.3 for an example. Since each bM1(j) with 1 ≤ j ≤ m is an integral
multiple of h, we have broadness(M1) = O(nh ). Since each aM3(j)− 1 with 1 ≤ j ≤ m
is an integral multiple of h, we have broadness(M3) = O(nh ). By Lemma 3.4 with
thickness(M1) = O(h) and thickness(M3) = O(h), the row-minima problems on M1

and M3 can be solved in O(n+m) time. Every h consecutive rows of M2 are identical.
Specifically, for each positive index t, rows (t − 1) · h + 1, (t − 1) · h + 2, . . . , t · h of
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M2 are identical. Let M2 be condensed into an O(nh ) × m matrix M∗ by merging
every h consecutive rows of M2 into a single row. We have thickness(M∗) = O( 1h ·
thickness(M)) and broadness(M∗) = O(nh ). The row minima of M2 can be obtained
from those of M∗ in O(n) time. The lemma is proved.

We are ready to prove Lemma 3.2.
Proof of Lemma 3.2. Let M be the input n×m matrix. We first apply Lemma 3.3

to have M sorted in O(n+m) time. Let � = 1+ 
log2 log2 n�. Assume n ≥ 2 without
loss of generality, so � ≥ 1. Define a decreasing sequence h0, h1, . . . , h� of positive
integers as follows:

hk =

{
22

�−k−1

if 0 ≤ k ≤ �− 1,
1 if k = �.

Each hk is a power of two. One can verify that h0 ≥ n, h1 < n, h�−1 = 2, and
hk−1 = h2

k holds for each k = 1, 2, . . . , � − 1. For each k = 1, 2, . . . , �, if k is the
smallest positive integer such that the jth column of M is hk-brushed, then let j ∈ Jk.
By h� = 1, sets J1, J2, . . . , J� form a disjoint partition of the indices of the nondummy
columns of M . For the matrix in Figure 3.1 with n = 17, we have � = 4, h0 = 256,
h1 = 16, h2 = 4, h3 = 2, h4 = 1, J4 = {1}, J3 = {2, 3}, J2 = {4, 5, 6, 7}, and
J1 = {8, 9, 10}. For each k = 1, 2, . . . , �, let jk = |Jk|. By j1 + j2 + · · ·+ j� = m, the
lemma follows immediately from the following two statements:

Statement 1: Sets J1, J2, . . . , J� can be obtained from M in O(m + n · �) time.
Statement 2: For each k = 1, 2, . . . , �, the row-minima problem on the submatrix

of M induced by the columns with indices in Jk can be solved in
O(n+ jk) time.

Statement 1. For each i = 1, 2, . . . , n, let Mi be the submatrix of M induced by
the columns whose indices j satisfy aM (j) = i. Let mi be the number of columns
in Mi. For each i = 1, 2, . . . , n and each j = 1, 2, . . . ,mi, let κ(i, j) be the index
k such that Jk contains the index of the column of M that is the jth column of
Mi. Let κ(i, 0) = �. Since h1, h2, . . . , hk are all integral multiples of hk for each
k = 1, 2, . . . , �, Property S2 of M implies κ(i, 0) ≥ κ(i, 1) ≥ · · · ≥ κ(i,mi) ≥ 1. For
each j = 1, 2, . . . ,mi, to determine κ(i, j), it suffices to look for the first integer k
starting from κ(i, j − 1) down to 1 such that the jth column of Mi is hk-brushed
but not hk−1-brushed. Therefore, it takes overall O(mi + �) time to compute indices
κ(i, 1), κ(i, 2), . . . , κ(i,mi). Sets J1, J2, . . . , J� can thus be obtained in O(m + n · �)
time. Statement 1 is proved.

Statement 2. Let Mk be the submatrix of M induced by the columns with
indices in Jk. If j ∈ Jk, then the jth column of M is not hk−1-brushed, im-
plying thickness(Mk) < hk−1 = O(h2

k). By Lemma 3.5, the row-minima prob-
lem on Mk can be reduced in O(n + jk) time to the row-minima problem on an
O( n

hk
) × jk matrix M∗

k with thickness(M∗
k ) = O(thickness(Mk) · 1

hk
) = O(hk) and

broadness(M∗
k ) = O( n

hk
). By Lemma 3.4, the row minima of M∗

k can be computed

in time O( n
hk

+ jk + hk · n
hk

) = O(n + jk). Therefore, the row minima of Mk can be

computed in O(n+ jk) time. Statement 2 is proved. The lemma is proved.

3.2. A linear-time intermediate algorithm for matrices with very few
rows. This subsection proves the following lemma.

Lemma 3.6. Let n be a given positive integer. Let h = max(1, 
log2 log2 n�). It
takes O(n) time to compute an O(n)-space data structure, with which the row minima
of any h×m matrix can be computed in O(h+m) time.
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Initialization: Let q(0) = ∞, z(0) = 1, and z(1) = z(2) = · · · = z(h+ 1) = 0.
For-loop: For each j = 1, 2, . . . , m, execute the following steps.
Step 1: Let i0 = a(j), i2 = b(j) + 1, and i1 = pred(z, i2 − 1).
Step 2: If c(j) ≥ q(i1), then proceed to the next iteration of the for-loop.
Step 3: If z(i2) = 0, then let z(i2) = 1 and q(i2) = q(i1).
Step 4: While i0 ≤ i1 and c(j) < q(i1), execute the following substep.
Substep 4a: Let z(i1) = 0, i2 = i1, and i1 = pred(z, i2 − 1).
Step 5: If c(j) < q(i1), then let z(i0) = 1 and q(i0) = c(j).
Step 6: If c(j) > q(i1), then let z(i2) = 1 and q(i2) = c(j).

Fig. 3.2. Algorithm 1: Computing the row minima for an h×m sorted concise matrix concisely
represented by arrays a, b, and c.

Proof. Let z be a binary string. For each index i ≥ 1, let z(i) denote the ith bit
of z. Let pred(z, i2) be the largest index i1 with i1 ≤ i2 and z(i1) = 1. Let Z consist
of all h-bit binary strings. By |Z| = 2h = O(log n), it takes o(n) time to construct an
o(n)-space data structure capable of supporting each update to z(i) and each query
pred(z, i) in O(1) time.

Let M be the input h×m matrix. Subscripts M of aM , bM , and cM are omitted
in the proof. To avoid boundary conditions, let there be two additional dummy rows
0 and h + 1 in M . We first apply Lemma 3.3 to have M sorted in O(h + m) time.
The proof needs only Property S1 of M , though. The algorithm proceeds iteratively,
one iteration per column of M , obtaining μ(i) = min{M(i, 1),M(i, 2), . . . ,M(i, j)}
for all row indices i = 1, 2, . . . , h at the end of the jth iteration. As a result, at
the end of the algorithm, we have the minimum of each row of M computed in
the minima array μ. To support efficient dynamic updates and queries, we cannot
afford to explicitly store each element of μ. Instead, we use an h-element query
array q together with an auxiliary binary string z for q to represent μ such that
μ(i) = q(pred(z, i)) holds for each row index i = 1, 2, . . . , h. Observe that if z(i) = 0,
then the value of q(i) does not matter. See Figures 1.3(a) and 3.3(a) for examples of
μ, q, and z.

The algorithm is as shown in Figure 3.2. The initial binary string z has exactly
one 1-bit. Each iteration of the for-loop increases the number of 1-bits in z by at
most three via Steps 3, 5, and 6. Each iteration of the while-loop of Step 4 decreases
the number of 1-bits in z by exactly one. Therefore, the overall number of times
executing Substep 4a throughout all m iterations of the for-loop is O(m). Since the
initialization takes O(h) time, Algorithm 1 runs in O(m + h) time. The rest of the
proof ensures the correctness of Algorithm 1.

For each j = 0, 1, . . . ,m, let μj , zj, and qj be the μ, z, and q at the end of the
jth iteration, respectively. See Figure 3.3(b) for the query array qj at the end of the
jth iteration for each j = 0, 1, . . . , 7 on the matrix M in Figure 3.3(a). By induction
on the column index j, we prove

(3.1) qj(pred(zj , i)) = μj(i) for all indices i with 1 ≤ i ≤ h.

Equation (3.1) with j = 0 for all indices i with 1 ≤ i ≤ h follows immediately from
the initialization of Algorithm 1. Assuming

(3.2) qj−1(pred(zj−1, i)) = μj−1(i) for all indices i with 1 ≤ i ≤ h
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M 1 2 3 4 5 6 7 μ q z

1 8 8 8 1
2 3 7 3 3 1
3 3 7 6 6 3 0
4 3 7 6 6 3 3 0
5 7 6 6 3 7 3 0
6 7 6 6 3 7 3 0
7 6 7 6 6 1
8 6 7 6 0

(a)

q0 q1 q2 q3 q4 q5 q6 q7

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 8 8 8 8 8 8 8
2 ∞ 3 3 3 3 3 3
3
4
5 ∞ 7 6 6
6
7 ∞ ∞ 6 6
8

9 ∞ ∞ ∞

(b)

Fig. 3.3. (a) A sorted 8× 7 concise matrix M , the final minima array μ of M , the final query
array q of μ, and the final auxiliary binary string z. The ∞-entries of M and the entries of q that
do not matter are left out. (b) For each j = 0, 1, . . . , 7, the query array qj at the end of the jth
iteration of the for-loop. The entries that do not matter are left out. The shaded cells of the jth
column with 1 ≤ j ≤ 6 indicate the indices i1 and i2 in the jth iteration. The italic cell of the jth
column indicates the index i∗ of the jth column. For instance, we have i1 = 0, i∗ = 1, and i2 = 2
in the first iteration and i1 = i∗ = 2 and i2 = 5 in the sixth iteration.

holds with j ≥ 1, we show (3.1) by the following analysis on the jth iteration of
the for-loop. By Property S1 of M , we have a(j) ≥ max{a(1), a(2), . . . , a(j − 1)},
implying

(3.3) μj−1(a(j)) ≤ μj−1(a(j) + 1) ≤ μj−1(a(j) + 2) ≤ · · · ≤ μj−1(b(j)).

We first consider the case with μj−1(b(j)) ≤ c(j). See iteration 7 of the example
in Figure 3.3 for an instance of this situation. By (3.3), the jth column of M does
not affect the content of the minima array, i.e., μj = μj−1. By (3.2), at the end of
Step 1, we have q(i1) = qj−1(pred(zj−1, b(j))) = μj−1(b(j)) ≤ c(j). Therefore, Step 2
proceeds to the next iteration without altering the content of q and z. By μj = μj−1,
zj = zj−1, and qj = qj−1, (3.1) follows from (3.2). The rest of the proof assumes
c(j) < μj−1(b(j)), implying that Steps 4, 5, and 6 are executed in the jth iteration.

To prove (3.1) for indices i with b(j) < i ≤ h, we first show that Steps 4, 5, and 6
do not alter the values of z(i) and q(i) for indices i with b(j) < i ≤ h. At the end
of Step 3, condition c(j) < q(i1) holds. Step 6 sets z(i2) = 1 and q(i2) = c(j) only
if c(j) > q(i1), implying that Substep 4a executes at least once. We have i2 ≤ b(j)
when Step 6 alters the values of z(i2) and q(i2). Observe that max(i0, i1) ≤ b(j)
holds throughout the jth iteration. Therefore, Steps 4, 5, and 6 do not alter the
values of q(i) and z(i) for indices i with b(j) < i ≤ h. By (3.2) and Step 3, we have
zj(b(j)+1) = 1 and qj(b(j)+1) = μj−1(b(j)+1) = μj(b(j)+1). Since μj(i) = μj−1(i)
holds for indices i with b(j) < i ≤ h, (3.1) for indices i with b(j) < i ≤ h follows from
(3.2) for indices i with b(j) < i ≤ h. See iterations 1–6 of the example in Figure 3.3
for instances of this situation: Step 3 alters the content of q and z in iterations 1–3
and 5–6; Step 3 does not alter the content of q and z in iteration 4.

It remains to prove (3.1) for indices i with 1 ≤ i ≤ b(j). After Step 1, we have
i0 = a(j) for the rest of the jth iteration. Step 4 sets z(i) = 0 for each index i with
i0 ≤ i ≤ b(j), zj−1(i) = 1, and c(j) < qj−1(i). The following equations hold for the
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fixed values of indices i1 and i2 after Step 4 (i.e., during the execution of Steps 5
and 6):

i0 > i1 or c(j) ≥ μj−1(i1),(3.4)

μj−1(i) = qj−1(i1) for all indices i with i1 ≤ i ≤ i2 − 1.(3.5)

Equation (3.4) is due to the fact that the condition of while-loop of Step 4 does not
hold. Equation (3.5) follows from (3.2) and i1 = pred(zj−1, i2 − 1), as ensured by
Step 1 and Substep 4a. By c(j) < μj−1(b(j)), we have μj(b(j)) = c(j). Moreover,
if i2 ≤ b(j) (i.e., Substep 4a being executed at least once in the jth iteration), then
(3.3) implies

(3.6) μj(i) = c(j) for all indices i with i2 ≤ i ≤ b(j).

Let i∗ be the smallest index with i1 ≤ i∗ and μj(i
∗) = μj(i

∗ + 1) = · · · = μj(b(j)) =
c(j). In iterations 1–6 of the example in Figure 3.3, for each j = 1, 2, . . . , 6, the i∗th
entry of qj is italic and the i1th and i2th entries of qj with i1 < i2 are shaded
in Figure 3.3(b). For instance, we have (i1, i2, i

∗) = (0, 2, 1) in iteration 1 and
(i1, i2, i

∗) = (2, 5, 2) in iteration 6. One can verify

(3.7) μj(i) = μj−1(i) for all indices i with 1 ≤ i < i∗

as follows. For each index i with 1 ≤ i < i0, we already have μj(i) = μj−1(i), since
the (i, j)-entry of M is ∞. Therefore, it remains to consider the case with i0 ≤ i∗ − 1
and verify (3.7) for indices i with i0 ≤ i ≤ i∗ − 1. By (3.3), it suffices to ensure
μj(i

∗ − 1) = μj−1(i
∗ − 1). Assume μj(i

∗ − 1) �= μj−1(i
∗ − 1) for a contradiction.

We have μj−1(i
∗ − 1) > μj(i

∗ − 1) = c(j). By μj(i
∗ − 1) = c(j) and the definition

of i∗, we have i∗ = i1, which implies i0 < i1. By i0 < i1 = i∗ and (3.4), we have
c(j) ≥ μj−1(i1) = μj−1(i

∗), implying μj−1(i
∗ − 1) > c(j) ≥ μj−1(i

∗). By definition
of i∗, we have i∗ ≤ b(j). However, μj−1(i

∗ − 1) > μj−1(i
∗) and i0 ≤ i∗ − 1 < b(j)

contradict (3.3).
Assume i2 < i∗ for a contradiction. By the definition of i∗, we have i2 ≤ b(j),

implying that Step 4a is executed at least once. By (3.6), μj(i) = c(j) holds for all
indices i with i2 ≤ i ≤ b(j), which contradicts the definition of i∗. By i∗ ≤ i2, we have
q(i) = qj−1(i) and z(i) = zj−1(i) for all indices i with 1 ≤ i < i∗ at the end of Step 4.
By i1 ≤ i∗, we have z(i) = 0 for all indices i with i∗ < i ≤ b(j) at the end of Step 4.
Combining with (3.7), in order to satisfy (3.1) for all indices i with 1 ≤ i ≤ b(j), it
suffices for Steps 5 and 6 to additionally ensure z(i∗) = 1 and q(i∗) = c(j). By the
following case analysis, ensuring zj(i

∗) = 1 and qj(i
∗) = c(j) is exactly what Steps 5

and 6 do:
• Case 0: c(j) < qj−1(i1). We show i∗ = i0. By c(j) < qj−1(i1) = μj−1(i1)
and (3.4), we have i1 < i0. Before executing Step 4, we have i0 < i2. Each
time Substep 4a is executed, the current value of i2 equals the value of i1
in the previous iteration of the while-loop, when condition i0 ≤ i1 of the
while-loop must hold. Regardless of whether Step 4a is executed, we have
i0 ≤ i2 at the end of Step 4. If i0 < i2, then i1 < i0 < i2 and (3.5) imply
μj−1(i0) = qj−1(i1) > c(j). If i0 = i2, then i0 equals the value of i1 at the
execution of Substep 4a for the last time, when condition c(j) < q(i1) of the
while-loop must hold. Thus, we have μj−1(i0) = qj−1(i0) > c(j). Either way,
we have μj−1(i0) > c(j). By μj−1(i0) > c(j), and (3.3), we have μj(i) = c(j)
for all indices i with i0 ≤ i ≤ b(j). By i1 < i0, we have i∗ ≤ i0. By
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i1 ≤ i0−1 < i2 and (3.5), we have μj(i0−1) = μj−1(i0−1) = qj−1(i1) > c(j),
implying i∗ = i0.

• Case 1: c(j) = qj−1(i1). We show i∗ = i1. By c(j) = qj−1(i1) and the fact
that condition c(j) < q(i1) holds at the end of Step 3, we know that Step 4a
is executed at least once, implying i2 ≤ b(j) and (3.6). By c(j) = qj−1(i1)
and (3.5), we have μj−1(i) = c(j) and thus μj(i) = c(j) for all indices i with
i1 ≤ i < i2. Therefore, i

∗ = i1.
• Case 2: c(j) > qj−1(i1). We show i∗ = i2. By c(j) > qj−1(i1) and the
fact that condition c(j) < q(i1) holds at the end of Step 3, we know that
Step 4a is executed at least once. By (3.6), we have i∗ ≤ i2. By (3.5) and
c(j) > qj−1(i1), we have c(j) > μj−1(i2 − 1), implying μj(i2 − 1) < c(j).
Therefore, i∗ = i2.

For Case 0, i.e., i∗ = i0, as illustrated by iterations 1 and 2 of the example in Figure 3.3,
Step 5 correctly sets zj(i

∗) = 1 and qj(i
∗) = c(j). For Case 2, i.e., i∗ = i2, as

illustrated by iterations 3 and 4 of the example in Figure 3.3, Step 6 correctly sets
zj(i

∗) = 1 and qj(i
∗) = c(j). For Case 1, we have i∗ = i1, as illustrated by iterations 5

and 6 of the example in Figure 3.3. At the end of Step 4, we already have z(i∗) = 1
and q(i∗) = c(j). Since Steps 5 and 6 do not alter the content of q and z, we also
have zj(i

∗) = 1 and qj(i
∗) = c(j). The lemma is proved.

3.3. Proving Lemma 3.1. We are ready to prove the lemma of the section.
Proof of Lemma 3.1. It suffices to prove the lemma for the case that the input

n × m matrix is concise. Let h = max(1, 
log2 log2 n�). Let M be the submatrix
of the input matrix induced by the h-brushed columns. By Lemma 3.5, the row-
minima problem on M can be reduced in O(n+m) time to the row-minima problem
on an O(nh ) × O(m) matrix M∗. By Lemma 3.2, the row minima of M∗ can be
computed in time O(nh log logn+m) = O(n+m), which yield the row minima of M
in O(n+m) time.

Let M0 be the submatrix of the input matrix induced by the columns that are
not h-brushed. Let � = 
n

h �. For each k = 1, 2, . . . , �, let Mk be the submatrix of M0

induced by the columns whose indices j satisfy (k − 1) · h < aM0(j) ≤ bM0(j) < k · h
and the rows with indices (k − 1) · h+ 1, (k − 1) · h+ 2, . . . , k · h− 1. See Figure 1.4
for an illustration. Let mk be the number of columns in Mk. By Lemma 3.6, the row
minima of Mk can be computed in O(h + mk) time with the help of an O(n)-time
precomputable data structure. As a result, the row-minima problems on all matrices
Mk with 1 ≤ k ≤ � can be solved in overall time O(n) +

∑
1≤k≤� O(h + mk) =

O(n +m). The row minima of M0 can be obtained from combining the row minima
of M1,M2, . . . ,M� in O(n+m) time. The lemma is proved.

4. Concluding remarks. For directed acyclic graphs and undirected graphs,
we give linear-time reductions for the replacement-paths problem to the single-source
shortest-paths problem. The reductions are based upon our O(n+m)-time algorithm
for the row-minima problem on an O(1)-concise n × m matrix, which is allowed to
have negative entries. On the one hand, our reductions for directed acyclic graphs
in sections 2.1 and 2.2 work even if there are negative-weighted edges. Therefore,
we have shown that the replacement-paths problem on directed acyclic graphs with
general weights is no harder than the single-source shortest-paths problem on directed
acyclic graphs with general weights. On the other hand, our reductions for undirected
graphs in sections 2.1 and 2.2 do assume nonnegativity of edge weights. However, it
is not difficult to accommodate negative-weighted edges in undirected graphs for the
replacement-paths problem, as is briefly explained in the next two paragraphs.
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Fig. 4.1. Two undirected connected graphs G with dG(r, s) = −∞.

Let r and s be two nodes of the input connected undirected n-node m-edge graph
G with negative-weighted edges. See Figure 4.1 for examples. We have dG(r, s) = −∞.
G has no shortest rs-path. The input rs-path P must pass some negative-weighted
edge an infinite number of times. For each edge e ∈ P , let Ge denote the connected
component of G − e that contains r. It takes overall O(n + m) time to classify all
edges e of P into the following three sets:

• Set 1: s /∈ Ge. We have dG−e(r, s) = ∞.
• Set 2: s ∈ Ge andGe has negative-weighted edges. We have dG−e(r, s) = −∞.
• Set 3: s ∈ Ge and Ge has no negative-weighted edges. We have dG−e(r, s) =
dGe(r, s).

It can be verified that if Set 3 is nonempty, then distances dGe(r, s) are identical for all
edges e of Set 3. See Figure 4.1(a) for an example. The edges in Set 3 are u1u2, u4u5,
and u5u6. We have dG−u1u2(r, s) = dG−u4u5(r, s) = dG−u5u6(r, s) = 8. Therefore, the
replacement-paths problem on G with respect to P can be reduced in O(n+m) time
to the single-source shortest-paths problem on Ge for an arbitrary edge e in Set 3. As
a result, the edge-avoiding version of the replacement-paths problem on undirected
graphs with general weights is no harder than the single-source shortest-paths problem
on undirected graphs with nonnegative weights.

The node-avoiding version of the replacement-paths problem is slightly more com-
plicated. For each node v ∈ P other than r and s, let Gv denote the connected com-
ponent of G− v that contains r. It takes overall O(n +m) time to classify all nodes
v of P other than r and s into the following three sets:

• Set 1′: s /∈ Gv. We have dG−v(r, s) = ∞.
• Set 2′: s ∈ Gv and Gv has negative-weighted edges. We have dG−v(r, s) =
−∞.

• Set 3′: s ∈ Gv and Gv has no negative-weighted edges. We have dG−v(r, s) =
dGv (r, s).

If Set 3′ is nonempty, then dGv (r, s) are not necessarily identical for all nodes v of
Set 3′. See Figure 4.1(b) for an example. The nodes in Set 3′ are u1 and u2. We have
dG−u1(r, s) = 9 and dG−u2(r, s) = 8. However, one can show that there are at most
two distinct values of dGv (r, s) for all nodes v of Set 3′. Therefore, the node-avoiding
version of the replacement-paths problem on undirected graphs with general weights
is also no harder than the single-source shortest-paths problem on undirected graphs
with nonnegative weights.

Our presentation focuses on computing the edge-avoiding and node-avoiding dis-
tances. It is not difficult to additionally report their corresponding edge-avoiding and
node-avoiding shortest paths in O(1) time per edge. For instance, given a shortest-
paths tree T of G rooted at r and a shortest-paths tree T ′ of G′ rooted at s as defined
in section 2.1, if the xyth column of the edge-replacement matrix M contains the
minimum of the ith row, then the union of (a) the rx-path in T , (b) the edge xy,
and (c) the ys-path in T ′ is a shortest rs-path in G− ei. The node-avoiding shortest
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rs-path can be similarly obtained from T , T ′, and a shortest-paths tree T0 of G0

rooted at r0 as defined in section 2.2.

It would be of interest to see results for the single-source, all-pairs, or near-optimal
version of the problem of finding replacement paths in undirected graphs or directed
acyclic graphs that avoid multiple failed nodes or edges.

Acknowledgment. We thank the anonymous reviewers for their helpful
comments.
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