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Abstract

Floor-planning is a fundamental step in VLSI chip design. Based upon the conceqtdefly
spanning trees, we present a simpl@ (n)-time algorithm to construct a floor-plan for anynode
plane triangulation. In comparison with previous floor-planning algorithms in the literature, our
solution is not only simpler in the algorithm itself, but also produces floor-plans which require fewer
module types. An equally important aspect of our new algorithm lies in its ability to fit the floor-
plan area in a rectangle of size — 1) x | (2n + 1)/3]. Lower bounds on the worst-case area for
floor-planning any plane triangulation are also provided in the paper.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

In VLSI chip designfloor-planning[17,22] refers to the process of, given a graph whose
nodes (respectively, edges) representing functional entities (respectively, interconnections),
partitioning a rectangular chip area into a set of nonoverlapping rectilinear polygonal
modules (each of which describes a functional entity) in such a way that the modules
of adjacent nodes share a common boundary. For example, Fig. 1(b) is a floor-plan of the
graph in Fig. 1(a).
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Fig. 1. (a) A plane triangulatior, where an orderly spanning tr@eof G rooted at node 1 is drawn in dark. The
node labels show the counterclockwise preordering of the nodBs(im) A floor-plan ofG.

(a) (b) (©) (d)

Fig. 2. Four types of modules required by He’s floor-planning algorithm [10]: (a) I-module, (b) L-module,
(c) T-module, and (d) Z-module. Our algorithm does not need Z-modules.

Early stage of thdloor-planning research focused on usimgctangular modules as
the underlying building blocks. A floor-plan using only rectangles to represent nodes is
called arectangular dual. It was shown in [14-16] that a plane triangulatiGhadmits
a rectangular dual if and only i&; has four exterior nodes, and has noseparating
triangles. (A separating triangle, which is also known as complex triangle [22,23], is a
cycle of three edges enclosing some nodes in its interior.) As for floor-planning general
plane graphs, Yeap and Sarrafzadeh [23] showed that rectilinear modules with at most two
concave corners are sufficient and necessary.

In a subsequent study of floor-planning, He [10] measured the complexity of a module
in terms of the number of its constituent rectangles, as opposed to the number of concave
corners. A module that is a union bbr fewer disjoint rectangles is calledaectangular
module. Since any rectilinear module with at most two concave corners can be constructed
by three rectangular modules, the result of Yeap and Sarrafzadeh [23] implies the feasibility
of floor-planning plane graphs using 3-rectangular modules. He [10] presented a linear-
time algorithm to construct a floor-plan of a plane triangulation using only 2-rectangular
modules. He’s floor-planning algorithms consists of three phases: The first phase utilizes
thecanonical ordering [7,12,13] to assign nodes on separating triangles. The second phase
involves the so-calledertex expansion operation to break all separating triangles. The third
phase adapts rectangular-dual algorithms [1,2,9,13] to finalize the drawing of the floor-
plan. Figure 2 depicts the shapes of the 2-rectangular modules required by He’s algorithm.
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For convenience, these four shapes are referred texaslule, L-module, T-module, and
Z-module throughout the rest of this paper.

In this paper, we provide a “simpler” linear-time algorithm that computes “compact”
floor-plans for plane triangulations. The “compactness” of the output floor-plans is an
important advantage of our algorithm. Although previous work [10,23] reveals no area
information, one can verify that a floor-plan using ory(1)-rectangular modules may
require areda?2 (n) x £2(n). The output of our algorithm for am-node plane triangulation
has area ho more than — 1) x [ (2n + 1) /3], which can be shown to be almost worst-case
optimal. What “simplicity” means is two-fold:

e First, as opposed to the multiple-phase approach of [10,23], our algorithm is based
upon a recent developmentarfderly spanning trees[4], which provides an extension
of canonical ordering [7,12,13] to plane graphs not required to be triconnected and
an extension forrealizer [19,20] to plane graphs not required to be triangulated.
Our approach bypasses the somewhat complicated rectangular-dual phase. Aside
from the two applications of orderly spanning trees reported in [4] (namely, succinct
encodings for planar graphs with efficient query support [5,11,18] and 2-visibility
drawings for planar graphs [8]), our investigation here finds another interesting
application of orderly spanning trees. (A similar concept catletbred stratification
and its application in constructing 2-visibility drawing were independently studied by
Bonichon et al. [3].)

e Second, the floor-plan design of our algorithm is “simpler” (in comparison with [10])
in its own right, in the sense that I-modules, L-modules, and T-modules suffice. (Recall
that Z-modules are needed by He’s algorithm [10].) Our result is worst-case optimal,
since there is a plane triangulation that does not admit any floor-plan consisting of only
I-modules and L-modules [21, Fig. 4].

The remainder of this paper is organized as follows. Section 2 reviews the definition
and property of orderly spanning tree for plane graph. Section 3 presents our linear-time
floor-planning algorithm as well as its correctness proof. Section 4 provides a lower bound
for the required area for floor-planning plane triangulations. Section 5 concludes the paper.

2. Orderly spanning tree

A plane graph is a planar graph equipped with a fixed planar embedding. The
embedding of a plane graph divides the plane into a number of connected regions, each
of which is called aace. The unbounded face @ is called theexterior face, whereas
the remaining faces aieterior faces. G is aplane triangulation if G has at least three
nodes and the boundary of each face, including the exterior fagg,isfa triangle. Let
T be a rooted spanning tree of a plane gr&phTwo nodes arenrelated in 7 if they are
distinct and neither of them is an ancestor of the oth&t.iAn edge ofG is unrelated with
respect tdl" if its endpoints are unrelated iA. Let vy, vy, ..., v, be the counterclockwise
preordering of the nodes ifi. A nodev; is orderly in G with respect tdl' if the neighbors
of v; in G form the following four blocks in counterclockwise order around
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B1(v;): the parent ob;,

B>(v;): the unrelated neighbots of v; with j <1,
B3(v;): the children ofy;, and

Ba(v;): the unrelated neighbots of v; with j > i,

where each block could be empt§.is anorderly spanning tree of G if vy is on the
boundary ofG’s exterior face, and each;,1 < i < n, is orderly in G with respect
to T. It is not difficult to see that iiG is a plane triangulation, theBy(v;) (respectively,
Bs4(v;y)) is nonempty for each =3, 4,...,n (respectively; =2,3,...,n — 1). For each
i=23,...,n,let p(i) be the index of the parent of in 7. Let w(i) denote the number
of leaves in the subtree @f rooted atv;. Let £(i) andr (i) be the functions such tha;
(respectivelyy,(;)) is the last (respectively, first) neighbor of in B2(v;) (respectively,
Bs4(v;)) in counterclockwise order aroung. For example, in the example shown in
Fig. 1(a), one can easily verify that node 3 is indeed orderly with respett where
B1(3) = {1}, B2(3) = {2}, B3(3) ={4,5}, B4a(3) ={6,9}, p3) =1, w) =2,{((3) =2,
andr(3) = 9. WhenG is a plane triangulation, it is known [4] that for each edge v;) of
G —T withi < j, atleast one of = £(j) andj = r(i) holds. To be more specific, if= 2
andj = n, then both 2= £(n) andn = r(2) hold; otherwise, precisely one b&= £(;j) and

Jj =r(i) holds.

The concept of orderly spanning tree for plane graphs [4] extends thasnohical
ordering [7,12,13] for plane graphs not required to be triconnected and thablozer [6,
19,20] for plane graphs not required to be triangulated. Specifically, whé&na plane
triangulation,

(i) if T is an orderly spanning tree @f, then the counterclockwise preordering of the
nodes ofT is always a canonical ordering 6f, and

(@) if (11, T», T,,) is arealizer ofG, whereT; is rooted aty; for eachi =1, 2, n, then each
T; plus both external edges 6f incident tov; is an orderly spanning tree 6f.

Our floor-planning algorithm is based upon the following lemma.

Lemma 1 (see [4]).Given an n-node planetriangulation G, an orderly spanning tree T' of
G with at most | (22 + 1)/3] leavesis obtainablein O (n) time.

3. Our floor-planning algorithm

A floor-plan F of G is a partition of a rectangle inte nonoverlapping rectangular
modulesry, 2, ..., r, such that; andv; are adjacent irG if and only if the boundaries
of r; andr; share at least one nondegenerated line segmensiZhef F is the area of the
rectangle being partitioned h§ with the convention that the corners of all modules are
placed on integral grid points. For example, the size of the floor-plan shown in Fig. 1(b) is
9 x 8. This section proves the following main theorem of the paper.
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Theorem 1. Given an n-node plane triangulation G with n > 3, a floor-plan F of G can
be constructed in O (n) time such that

(1) F consists of I-modules, L-modules, and T-modules only, and
(2) thesizeof F isbounded by (n — 1) x [(2n + 1)/3].

Let T be an orderly spanning tree 6f, wherevs, va, ..., v, is the counterclockwise
preordering off". Our floor-planning algorithm is described as follows. Although the first
two steps of our algorithm follow how Chiang et al. [4] obtained their 2-visibility drawing
of G with respect tol', we list them this way to make the presentation of our algorithm
more self-contained.

Algorithm FloorPlan(G,T).

Sep 1. Produce a (vertical) visibility drawing df as follows: Foreach=1,2, ..., n,
if v; is aleaf ofT', then draw; as a unit square; otherwise, drayas a 1x w(i) rectangle.
Place each node beneath its parent such that the children of each node is placed in the same
orderas inT.

Sep 2. Turn the above visibility drawing of’ into a 2-visibility drawing of G by
stretching the nodes downward in the least necessary amount such t@iad v; are
horizontally visible to each other if and only (b;, v;) is an unrelated edge @ with
respect tal'. Specifically, for eaclh = 3, 4, ..., n, theith iteration of this step ensures the
horizontal visibility between; and each node iB2(v;).

Sep 3. First, grow a horizontal branch fo;, from boundary ob,, visible tov, such that
the left boundary of the horizontal branch touchgsSecond, for each=3,4,...,n— 1,
grow horizontal branches fef from the boundaries af; visible tov,(;y andv,(;, such that
the left (respectively, right) boundary of the horizontal branch touehgs(respectively,
v(;))- Furthermore, when extending the boundarygfwe also extend the boundaries of
the descendants af to maintain the property that the bottom boundary of each internal
node of T is completely occupied by the top boundaries of its children. Note that some
former extended modules might be covered by latter extending.

Sep4.Foreacli=n—1,n—-2,..., 3, if v; has a horizontal branch with height greater
than one, then reduce the height of the thick branch down to one.

Pictures of intermediate steps are shown to illustrate how our algorithm obtains the
floor-plan in Fig. 1(b) for the plane grapfi with respect to the orderly spanning tree
T shown in Fig. 1(a). Figure 3 shows how Step 1 obtains the visibility drawing for
Figure 4 shows how Step 2 obtains the resulting 2-visibility drawingfofObserve that
the resulting drawing satisfies the property that the bottom boundary of each internal node
of T is completely occupied by the top boundaries of its children. Figure 5 illustrates how
Step 3 obtains the resulting drawing Gr Note that when the horizontal branch of node 3
is extended to the right by one unit to touch the left boundary of node 9, the right boundary
of node 5 is also extended to the right by the same amount. To see the necessity of Step 4,
one can verify that the module for node 10 in Fig. 5(d) has a thick horizontal branch.
The height of this thick branch can be reduced by moving down the top boundary of the
thick branch that is adjacent to the bottom boundary of node 11. The resulting floor-plan



446 C.-C. Liao et al. / Journal of Algorithms 48 (2003) 441451

7 12

8

910]11

Fig. 3. Step 1: visibility drawing of".
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Fig. 4. Step 2: obtaining a 2-visibility drawing ¢f from the visibility drawing ofT by ensuring the horizontal
visibility betweenwv; and each node iB»(v;) for (a) nodes 3 and 4, (b) node 5, (c) nodes 6-8, (d) node 9,

(e) node 10, and (f) nodes 11 and 12.

consists of only I-modules, L-modules, and T-modules. Moreover, each horizontal branch

— (f)

of the L-modules and T-modules has height exactly one.

Lemma 2. The following statements hold for our algorithm FLOORPLAN.

(1) Thealgorithm can beimplementedto runin O (n) time.
(2) Theoutput is a floor-plan of G of size no morethan (n — 1) x w(vy).
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Fig. 5. Step 3: growing the horizontal branches for (a) node 12, (b) node 3, (c) nodes 4 and 5, and (d) nodes 6-11.

(3) The resulting floor-plan consists of I-modules, L-modules, and T-modules, where the
height of each horizontal branch of L-modules and T-modulesis one.

Proof. Statement (1). One can verify that our algorithm is implementable to run in linear
time as follows.

Sep 1. Sincew(vy), w(v?2),..., w(v,) can be computed fronT in O(n) time, the
described (vertical) visibility drawing df can easily be computed ifi (n) time.

Step 2. Note that we have to ensure thatindv; are horizontally visible to each other if
and only ifv; € Ba(v;) at the end of the stretch-down iteration igr Therefore, when the
boundaries of; and the nodes iB2(v;) are stretched down, the boundaries of some other
nodes might require being stretched down as well. For example, when we obtain Fig. 4(c)
from Fig. 4(b) by stretching down the boundary of node 6 to ensure that nodes 6 and 8 are
horizontally visible to each other, we also have to increase the heights of nodes 2 and 3 by
one. Thus, a naive implementation of this step may reqige?) time. However, this step
can be implemented by directly computing the positigh) of the bottom boundary aof;
foreachi =1, 2,...,n and the position (i, j) of the bottom boundary of each unrelated
edge(v;, v;) with i < j according to the following recurrence relation:

L)1 ifi =1;
(i) = max{y(£Gi), i), y(i,r(i))} otherwise
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y(lv .]) =1+ max{ye(h .])7 )’r(l: .])}1

where y,(i, j) and y,(i, j) are defined as follows. Let;; be the neighbor ob; that

immediately succeeds; in counterclockwise order aroung. Let v;; be the neighbor
of v; that immediately precedas in counterclockwise order around. By i < j, one

can easily see that eithér= p(j) or v € B2(v;) holds. Similarly, eitherj’ = p(i) or

vjr € Ba(v;) holds. Let

- y(jh if j =pG); . y(i") ifi"=pQ);
ye(@, j) = {y(i, j) otherwise yr(@ ) = {y(i/, j) otherwise

Clearly, the bottom positions(i) of all nodesy; can be obtained i® (n) time by dynamic
programming. Since the top position of is simply y(p(i)), the resulting 2-visibility
drawing of G can be obtained il® (n) time.

Sep 3. On the one hand, a naive implementation of this step may reuié) time,
since growing the horizontal branches for a node may cause boundary extension for its
descendants. On the other hand, although irittinéeration we are supposed to extend the
boundary of some descendangsof v;, we do not need to actually extend the boundaries
of v; until the beginning of theth iteration. Note that how far should the boundary of
v; be extended can be determined directly from the boundawy¢f in the jth iteration.
Clearly, the above “lazy” strategy reduces the time complexity of this st&pt). Since
the unrelated edge;, v;) of G — T with i < j and(v;, v;) # (v2, v,) Satisfies exactly one
equality ofi = £(j) andj = r(i), the resulting drawing is a partition of a rectangle into
n rectilinear regions. (That is, there is no gap among modules in the rectangle.) To prove
that the resulting drawing is indeed a floor-plan®f it suffices to show that growing a
horizontal branch o#; to reach the boundary of; does not result in new adjacency among
these rectilinear modules. Suppageis a hode whose bottom boundary touches the top
boundary of the horizontal branch af. Assume for a contradiction that is not adjacent
to v; in G. Since the resulting drawing of the previous step is a 2-visibility drawing ,of
a nodevy has to lie betweemn; andv; preventing their horizontal visibility to each other.
It follows that there is a face @ containing at least four nodes, v;, v, v, contradicting
the fact thatG is triangulated.

Sep 4. SinceT is an orderly spanning tree @f and G is a plane triangulation, one
can see that it; grows a horizontal branch to reaeh, then there must be a unique node
v whose bottom boundary touches the top boundary of that horizontal branghlbfs
also not difficult to verify that botltv;, vx) and(v;, vr) are unrelated edges with respect
to T. Thus, in the resulting drawing of the previous step, the left and right boundarigs of
have to touch; andv;. Therefore, the height of that horizontal branchotan be reduced
to one by moving downward the bottom boundarygf which is also the top boundary
of that horizontal branch, without changing the adjacenay,db other nodes in the floor-
plan. Clearly, each height-reducing operation tal€$) time by adapting lazy strategy, so
this step runs irO (n) time. Since the for-loop of this step proceeds frosan — 1 down
to 3, each horizontal branch has height exactly one at the end of this step.

Statement (2). Since Steps 3 and 4 do not affect the adjacency among the rectilinear
modules, it suffices to ensure that the 2-visibility drawing obtained in Step 2 has size no
more than(n — 1) x w(v1). By the definition of Steps 1 and 2, it is straightforward to see
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that the width of the resulting drawing is preciselyv1). It remains to show that(2, n),
which is exactly the height of the resulting 2-visibility drawing, is no more thanl as
follows. Assume for a contradiction that2, n) > n. It follows that there is a sequence of
unrelated edged, , vy,), (Vsy, Vsp)5 - - -, (Vs,,, Up,) With

2=, <Sp—1 <2< <1< << <ty =n

such that at least one aof # s;+1 andt; # ;41 holds for eachi = 1,2,...,n — 1.
It follows that the set{s1, s2,...,s,,11,12,...,1,} contains at least distinct integers,
thereby, contradicting the assumptior(2;, 1; < n.

Statement (3). By the definition of Step 3, one can easily verify that the resulting floor-
plan consists of I-modules, L-modules, and T-modules. By the height-reducing operation
performed on the horizontal branches in Step 4, the statement is prowed.

We are ready to prove the main theorem as follows.

Proof for Theorem 1. Straightforward by Lemmas 1 and 20

4. Lower bounds on the wor st-case ar ea of floor-plan
This section shows the near optimality of the output of our algorithm.

Lemma 3. For each n > 3, there is an n-node plane triangulation graph G,, such that any
hy, x w, floor-plan of G, satisfiesmin{h,,, w,} > [(2n+ 1)/3] and h,, + w,, > [4n/3].

Proof. The lower-bound examples are constructed inductively: For @agh4, G, is
obtained fromG,,_3 by adding an external triangle and arbitrarily triangulating the face
between the external triangle 6f, and the external boundary 6f,_3. As for the base
cases, letG, be an arbitrary:-node plane triangulation for each= 3,4,5. Now we

show that the required inequalities hold for each 3. As for the inductive basis, one can
verify minf{hs, w3} > 2, hz + w3 > 4, min{hg, wa} > 3, ha + wg > 6, Min{hs, ws} > 3,
andhs + ws > 7. Therefore the inequalities hold for the base cases. It remains to ensure
the induction step as follows.

9

2(n—3 1 2 1
MiN{hy, wa) > Min{hy_3, wp_a) +2> {%J +2={ ”; J

4(n —3 4n

5. Conclusion

A linear-time algorithm for producing compact floor-plans for plane triangulations has
been designed. Our algorithm is based upon a newly developed technique of orderly
spanning trees with bounded number of leaves [4]. In comparison with previous work
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on floor-planning plane triangulations [10], our algorithm is simpler in the algorithm itself
as well as in the resulting floor-plan in the sense that the Z-modules required by [10] is
not needed in our design. Another important feature of our algorithm is the upper bound
(n—1) x [(2n + 1)/3] on the area of the output floor-plan. Previous work [10,23] does not
provide any area bounds on their outputs. Investigating whethérn thd) x | (2n + 1) /3]

area is worst-case optimal is an interesting future research direction.
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