
Compact Encodings of Planar Graphs via
Canonical Orderings and Multiple Parentheses

Richie Chih-Nan Chuang 1 , Ashim Garg 2, Xin He 2., Ming-Yang Kao 3.*, and
Hsueh-I Lu 1

1 Department of Computer Science and Information Engineering,
National Chung-Cheng University, Chia-Yi 621, Taiwan, {cjn85, hil}@cs.ccu.edu.tw

2 Department of Computer Science, State University of New York at Buffalo,
Buffalo, NY 14260, USA, {agarg,xinhe}~cs.buffalo.edu
3 Department of Computer Science, Yale University,

New Haven, CT 06250, USA, kao-ming-yang@cs.yale.edu

Abstract. We consider the problem of coding planar graphs by binary
strings. Depending on whether O(1)-time queries for adjacency and de-
gree are supported, we present three sets of coding schemes which all
take linear time for encoding and decoding. The encoding lengths are
significantly shorter than the previously known results in each case.

1 I n t r o d u c t i o n

This paper investigates the problem of encoding a graph G with n nodes and
m edges into a binary string S. This problem has been extensively studied with
three objectives: (1) minimizing the length of S, (2) minimizing the time needed
to compute and decode S, and (3) supporting queries efficiently.

A number of coding schemes with different trade-offs have been proposed.
The adjacency-list encoding of a graph is widely useful but requires 2m[logn]
bits. (All logarithms are of base 2.) A folklore scheme uses 2n bits to encode a
rooted n-node tree into a string of n pairs of balanced parentheses. Since the
total number of such trees is at least ~ . (n-1)!(n-1)!' the minimum number
of bits needed to differentiate these trees is the log of this quantity, which is
2n- o(n). Thus, two bits per edge up to an additive o(1) term is an information-
theoretic tight bound for encoding rooted trees. Works on encodings of certain
other graph families can be found in [7, 12, 4, 17, 5, 16].

Let G be a plane graph with n nodes, m edges, f faces, and no self-loop. G
need not be connected or simple. We give coding schemes for G which all take
O(m + n) time for encoding and decoding. The bit counts of our schemes depend
on the level of required query support and the structure of the encoded graphs.

For applications that require support of certain queries, Jacobson [6] gave an
G(n)-bit encoding for a simple planar graph G that supports traversal in G(log n)
time per node visited. Munro and Raman [15] recently gave schemes to encode a
planar graph using 2m+Sn+o(m+n) bits while supporting adjacency and degree
queries in O(1) time. We reduce this bit count to 2m + 5~n + o(m + n) for any

* Research supported in part by NSF Grant CCR-9205982.
** Research supported in part by NSF Grant CCR-9531028.

119

adjacency and degree
[15] ours

self-loops
general 2m + 8n I 2m + 5}n
simple .~m + 5~.n

degree-one free
triconnected 2m + 3n

simple &
triconnected 2m + 2n
triangulated 2m + 2n

simple &
triangulated 2m + n

adjacency
old I ours

2m + 4~n
.~m + 5n

2m + 3n

2m + 2n

2m + 2n

2m+n

no query
[1311 ours

3.58m

3 m

~(log3)m

4 1.53m ~m

Fig. 1. This table compares our results with previous ones, where k is a positive con-
stant. The lower-order terms are omitted. All but row 1 assume that G has no self-loop.

constant k > 0 with the same query support. If G is triconnected or triangulated,
our bit count decreases to 2m + 3n + o(m + n) or 2m + 2n + o(m + n), resp. With
the same query support, we can encode a simple G using only 5m + 5~n + o(n)
bits for any constant k > 0. If a simple G is also triconnected or triangulated, the
bit count is 2m + 2n + o(n) or 2m + n + o(n), resp. If only O(1)-time adjacency
queries are supported, our bit counts for a general G and a simple G become
2m+42n+o(m+n) and 4 ~m + 5n + o(n), resp.

If we only need to reconstruct G with no query support, the code length can
be substantially shortened. For this case, Turs [19] used 4m bits. This bound
was improved by Keeler and Westbrook [13] to 3.58m bits. They also used 1.53m
bits for a triangulated simple G, and 3m bits for a connected G free of self-loops
and degree-one nodes. For a simple triangulated G, we improve the count to
4 ~m + O(1). For a simple G that is free of self-loops, triconnected and thus free
of degree-one nodes, we improve the bit count to 1.5(log3)m + O(1). Figure 1
summarizes our results and compares them with previous ones.

Our coding schemes employ two new tools. One is new techniques of process-
ing strings of multiple types of parentheses. The other tool is new properties of
canonical orderings for plane graphs which were introduced in [3, 8]. These con-
cepts have proven useful also for drawing plane graphs [10, 11, 18]. w discusses
the new tools. w describes the coding schemes that support queries. w presents
the more compact coding schemes which do not support queries. Due to space
limitation, the proofs of most lemmas are omitted.

2 N e w Encoding Tools

A simple (resp., multiple) graph is one that does not contain (resp., may contain)
multiple edges between two distinct vertices. A multiple graph can be viewed
as a simple one with positive integral edge weights, where each edge's weight
indicates its multiplicity. The simple version of a multiple graph is one obtained
from the graph by deleting all but one copy of each edge. In this paper, all graphs
are multiple unless explicitly stated otherwise. The degree of a node v in a graph

120

is the number of edges, counting multiple edges, incident to v in the graph. A
node v is a leaf of a tree T if v has exactly one neighbor in T. Since T may have
multiple edges, a leaf of T may have a degree greater than one.

2.1 M u l t i p l e T y p e s of P a r e n t h e s e s

Let S be a string. S is binary if it contains at most two kinds of symbols. Let S[i]
be the symbol at the i-th position of S, for 1 < i < [SI. Let select(S, i, []) be the
position of the i-th [] in S. Let rank(S, k, []) be the number of � 9 that precede
or at the k-th position of S. Clearly, if k = select(S, i, []), then i = rank(S, k, •).
Let $1 + . . . + Sk denote the concatenation of strings $1, . . . , Sk. (In this paper,
the encoding of G is usually a concatenation of several strings. For simplicity,
we ignore the issue of separating these strings. This can be handled by using
well-known data compression techniques with log n + O(log log n) bits [1].)

Let S be a string of multiple types of parentheses. Let S[i] and S[j] be an
open and a close parenthesis with i < j of the same type. S[i] and S[j] match
in S if every parenthesis enclosed by S[i] and S[j] that is the same type as S[i]
and S[j] matches a parenthesis enclosed by S[i] and S[j]. Here are some queries
defned for S:

- Let match(S, i) be the position of the parenthesis in S that matches S[i].
- Let firstk(S,i) (resp., lastk(S,i)) be the position of the first (resp., last)

parenthesis of the k-th type that succeeds (resp., precedes) S[i].
- Let enclosek (S, il, is) be the positions (j l , j2) of the closest matching paren-

thesis pair of the k-th type that encloses S[il] and S[i2].

S is balanced if every parenthesis in S belongs to a matching parenthesis pair.
Note that the answer to a query above may be undefined. If there is only one type
of parentheses in S, the subscript k in firstk (S, i), laStk (S, i), and enclosek (S, i, j)
may be omitted; thus, first(S, i) = i + 1 and last(S, i) = i - 1. If it is clear from
the context, the parameter S may also be omitted.

Fac t 1 ([2, 14, 15]) 1. Let S be a binary string. An auxiliary binary string
#1(S) of length o(ISI) can be obtained in O(ISI) time such that rank(S,/ , •)
and select(S,i, []) can be answered from S + #t (S) in 0(1) time.

2. Let S be a balanced string of one type of parentheses. An auxiliary bi-
nary string #2(S) of length o(ISI) can be obtained in O(ISI) time such that
match(S, i) and enclose(S, i, j) can be answered from S+#2(S) in 0(1) time.

The next theorem generalizes Fact 1 to handle a string of multiple types of
parentheses that is not necessarily balanced.

T h e o r e m 1. Let S be a string of 0(1) types of parentheses that may be un-
balanced. An auxiliary o(ISI)-bit string (~(S) can be obtained in O(ISI) time
such that rank(S, i ,D) , select(S,i ,D), match(S,i), firstk(S,i), lastk(S,i), and
enclosek(S,i,j) can be answered from S + a(S) in O(1) time.

Proof. The statement for rank(S,/, []) and select(S,/, F]) is a straightforward
generalization of Fact 1(1). The statement for firstk (S, i) can be shown as follows.
Let f (S , i , •) be the position of the first [] that succeeds S[i]. Clearly,

f (S, i, •) = select(S, 1 + rank(S, i, E]), [3); firstk(S, i) = min{f(S, i, (), f (S , i,))}

121

where (and) are the open and close parentheses of the k-th type in S, resp.
The statement for lastk (S, i) can be shown similarly.

To prove the statement for match(S, i) and enclosek(S, i , j) , first we ca show
that Fact 1 can be generalized to an unbalanced binary string S (proof omitted).
Suppose S has e types of parentheses. Let Sk (1 < k < g) be the string obtained
from S as follows.

- Every open (resp., close) parenthesis of the k-th type is replaced by two
consecutive open (resp., close) parentheses of the k-th type.

- Every parenthesis of any other type is replaced by a matching parenthesis
pair of the k-th type.

Each Sk is a string of length 21S I consisting of one type of parentheses and each
symbol Sk[i] can be determined from S[Li/2]] in O(1) time. For example,

S = [[({)] ({ } } (])
$1 = () () ((())) () ((() () () ((()))

S2 = [[[[[] [] []]] [] [] [] [] []]] []

The queries for S can be answered by answering the queries for Sk as follows.

- match(S, i) = Lmatch(Sk, 2i)/2], where S[i] is a parenthesis of the k-th type.
- Given i and j , let A = {2i,2i + 1, match(Sk,2i),match(Sk,2i + 1)} U

{2j, 2j + 1, match(&, 2j), match(&, 2j + 1)}. Let il = min A, j l = max A,
and (i2, j2) = enclose(Sk, il , j l) . Then: enclosek (S, i, j) = (Li2/2], L J2/2]).

Note that each of the above queries on some Sk can be answered in O(1) time by
Sk + #2(Sk). Since each symbol Sk[i] can be determined from S[Li/2]] in O(1)
time, the theorem holds by letting c~(S) = #2($1) + #2($2) + . " + #2(S~). []

Let $1 , . . . , Sk be k strings, each of O(1) types of parentheses. For the re-
mainder of the paper, let a(S1, S2 , . . . , Sk) denote c~(St) + c~(S~) + . . . + c~(Sk).

2.2 E n c o d i n g Trees

An encoding for a graph G is weakly convenient if it takes linear time to recon-
struct G; O(1) time to determine the adjacency of two nodes in G; O(d) time to
determine the degree of a node; and O(d) time to list the neighbors of a node
of degree d. A weakly convenient encoding for G is convenient if it takes O(1)
time to determine the degree of a node.

The folklore encoding F(T) of a simple rooted unlabeled tree T of n nodes
uses a balanced string S of one type of parentheses to represent the preordering
of T. Each node of T corresponds to a matching parenthesis pair in S.

Fac t 2 Let vi be the i-th node in the preordering of a rooted simple
following properties hold for the folklore encoding S of T.

1. The parenthesis pair for vi encloses the parenthesis pair for vj
only if vi is an ancestor of vj.

2. The parenthesis pair for vi precedes the parenthesis pair for vj
only if vi and vj are not related and i < j .

tree T. The

in S if and

in S if and

122

3. The i-th open parenthesis in S belongs to the parenthesis pair for vi.

Fac t 3 ([15]) Let T be a simple rooted tree of n nodes. F(T) + #2(F(T)) is a
weakly convenient encoding for T of 2n + o(n) bits, obtainable in O(n) time.

We show Fact 3 holds even if S is mixed with other O(1) types of parentheses.

T h e o r e m 2. Let T be a
types of parentheses such
encoding of T. Then S +

simple rooted unlabeled tree. Let S be a string of O(1)
that a given type of parentheses in S gives the folklore
a(S) is a weakly convenient encoding of T.

Proof. Let the parentheses, denoted by (and) , in S used by the encoding of T
be the k-th type. Let v l , . . . ,v,~ be the preordering of T. Let Pi = select(S,/ , ()
and qi = match(S, pi). By Theorem 1, Pi and qi can be obtained from S + c~(S)
in O(1) time. The index i can be obtained from Pi or qi in O(1) time by i =
rank(S, pi, () = rank(S, match(S, qi), (). The queries for T are as follows.

Case: adjacency queries. Suppose i < j . Then, (pi,qi) = enclosek(pj,qj) if
and only if vi is adjacent to vj in T, i.e., vi is the parent of vj in T.

Case: neighbor queries. Suppose that vi has degree d in T. The neighbors
of vi in T can be listed in O(d) time as follows. First, if i ~ 1, output vj,
where (pj, qj) = enclosek(pi, qi). Then, let pj = firstk(pi). As long as pj < qi, we
repeatedly output vj and update pj by firstk(match(pj)).

Case: degree queries. Since T is simple, the degree d of vi in T is simply the
number of neighbors in T, which is obtainable in O(d) time. []

We next improve Theorem 2 to obtain convenient encodings for multiple
trees. For a condition P, let 5(P) = 1, if P holds; let 5(P) = 0, otherwise.

T h e o r e m 3. Let T be a rooted unlabeled tree of n nodes, nt leaves and m edges.
Let S + a(S) be a weakly convenient encoding of Ts (the simple version of T).

1. A string D of (2m - n + nl) bits can be obtained in O(m + n) time such that
S + D + a(S, D) is a convenient encoding for T of 2m + n + nl + o(m) bits.

2. I f T is simple, a string D of nl bits and a string Y of n bits can be obtained
in O(m + n) time such that S + D + a(S, D, Y) is a convenient encoding for
T and has 2n + nl + o(n) bits.

Proof. Let v t , . . . , vn be the preordering of Ts. Let di be the degree of vi in T.
We show how to use a string D to store the information required to obtain di in
O(1) time. We only prove Statement 1.

Let 5i = 5(vi is internal in Ts). Since S + c~(S) is a weakly convenient encod-
ing for Ts, each 5~ can be obtained in O(1) time from S + a(S) . Initially, D is
just n copies of 1. Let bi = di - 1 - 5i. We add bi copies of 0 right after the i-th
1 in D for each v~. Since the number of internal nodes in Ts is n - n l , the bit

n count of D is n + ~'~4=l (di - 1 - ~i) = n + 2m - n - (n - n 1) = 2m - n + nl. D
can be obtained from T in O(m + n) time. The number bi of O's right after the
i-th 1 in D is select(D,i + 1, 1) - s e l e c t (D , / , 1) - 1. Since di = 1 + 5i + bi, the
degree of vi in T can be computed in O(1) time from S + D + c~(S, D). []

123

14 step j : interval I j :

1 3, 4, 5
2 6 ,7
3 8
4 9
5 10,11
6 12
7 13
8 14

1 2

Fig. 2. A triconnected plane graph G and a canonical ordering of G.

2.3 Canonical Orderings

In this subsection, we describe the canonical ordering of plane graphs. It was first
introduced for plane triangulations in [3], and extended to triconnected plane
graphs in [8]. We prove some new properties of this ordering. Let G be a simple
triconnected plane graph. Let v l , . . . , v~ be a node ordering of G. Let Gi be the
subgraph of G induced by vl, v2 , . . . , vi. Let Hi be the exterior face of Gi.

D e f i n i t i o n 1. Let v l , v 2 , . . . , v n be a node ordering of a simple triconnected
plane graph G = (V,E), where (vl,v2) is an arbitrary edge on the exterior
face of G. The ordering is canonical if there exist ordered intervals /1, . . . , IK
that parti t ion the interval [3, n] such that the following properties hold for every
1 _< j _< K: Suppose Ij = [k, k + q]. Let Cj be the path (Vk, Vk+l,. . . , Vk+q).

-- The graph Gk+q is biconnected. Its boundary Hk+q contains the edge (vl, v2)
and the path Cj. Cj has no chords in G.

- If q = 0, vk has at least two neighbors in Gk-1, each of them is on Hk-1.
- If q > 0, the path Cj has exactly two neighbors in Gk-1, each of them is

on Hk-1. The leftmost neighbor ve is incident only to Vk and the rightmost
neighbor vr is incident only to Vk+q.

-- For each vi (k < i < k+q) , i f / < n, vi has at least one neighbor in G-Gk+q.

Figure 2 shows a canonical ordering of G. Every triconnected plane graph
has a canonical ordering which can be constructed in O(n) time [8].

Given a canonical ordering of G with interval p a r t i t i o n / 1 , / 2 , . . . , IK, we can
obtain G = Gn from G2, which consists of the single edge (vl,v2), through the
following K steps: Suppose Ij = [k, k+q]. The j - th step obtains Gk+q from Gk-1
by adding q + 1 nodes Vk, Vk+l,.. . , Vk+q and their incidental edges in Gk+q.

Let T be the edge (vl, v2) plus the union of the paths (ve, Vk, Vk+l,. . . , Vk+q)
over all intervals Ij = Irk, Vk+q], 1 <_ j < K, where v~ is the leftmost neighbor of
Vk on Hk-1. One can easily see that T is a spanning tree of G rooted at vl. T is
called a canonical spanning tree of G. In Figure 2, T is indicated by thick lines.

We show every canonical spanning tree T has the following property.

L e m m a 1. Let T be the canonical spanning tree rooted at vl corresponding to
a canonical ordering vl, v2 , . . . , Vn of G.

124

1. Let (vi,vi,) be an edge in G - T. Then vi and vi, are not related in T.
2. For each node vi, the edges incident to vi show the following pattern around

vi in counterclockwise order: The edge from vi to its parent in T ; followed
by a block of nontree edges from vi to lower-numbered nodes; followed by a
block of tree edges from vi to its children in T; followed by a block of nontree
edges from vi to higher-numbered nodes. (Any of these blocks maybe empty).

3 S c h e m e s w i t h Q u e r y S u p p o r t

In this section we present our coding schemes that support queries. We give a
weakly convenient encoding for a simple triconnected graph G in w which il-
lustrates our basic techniques. We give the schemes for triconnected plane graphs
in w We state our results for triangulated and general plane graphs in w

3.1 Basis

Let T be a canonical spanning tree of a simple triconnected plane graph G. We
encode G using a balanced string S of two types of parentheses. The first type
(parentheses) is for the edges of T. The second type (brackets) is for the edges
of G - T.

The encoding Let S be the folklore encoding for T. Let vi be the i-th node in
the counterclockwise preordering of nodes of T. Let (i and)i be the parenthesis
pair corresponding to vi in S. We augment S by inserting a pair [e and] e of
brackets for every edge e = (vi ,vj) , where i < j , of G - T as follows: we place
[e right after)~ and] e right after (j.

Suppose that vi is adjacent to gi (resp., hi) lower- (higher-, resp.) numbered
nodes in G - T. Then S has the following pattern for every 1 < i < n: The open
parenthesis (i is immediately followed by gi close brackets. The close parenthesis
) i is immediately followed by hi open brackets. The following properties are clear.

Fac t 4 Let e = (v~,vj) be an edge of G - T, where i < j . Then

1. [e is located between) i and the first parenthesis that succeeds) ~ in S;
2.] ~ is located between (j and the first parenthesis that succeeds (j in S.

The following property for S is immediate from Fact 4:
P r o p e r t y A: The last parenthesis that precedes an open bracket is close. The
last parenthesis that precedes a close bracket is open.

Let e = (v~, vj) be an edge of G - T, where i < j . By Lemma 1 and Fact 2,
) i precedes (j in S. By Fact 4, S has the following property:

Fac t 5 Let e be an edge of G - T. Then [e precedes]e in S.

L e m m a 2. Let e and f be two edges in G - T with no common end vertex.
Suppose that [e < Ef . Then either [e <]~ < [I <]I or [e < [[<] f <]e.

([e< [I indicates [~ precedes [I-) The above lemma implies that]e and the
bracket that matches [~ in S are in the same block of brackets. From now on, we
rename the close brackets by redefining] e to be the close bracket that matches
[~ in S. It is clear that Property A and Facts 4, 5 still hold for S.

125

The queries We show S + a(S) is a weakly convenient encoding for G. Since T
is simple, then by Theorem 2, S + a (S) is a weakly convenient encoding for T. It
remains to show that S + ~(S) is also a weakly convenient encoding for G - T.
Let Pi and qi be the positions of (i and)i in S, resp.

- Adjacency. Suppose i < j . Note that vi and vj are adjacent in G - T if
and only if qi < p < q < firstl(pj), where (p, q) = enclose2(firstl(qi),pj), as
indicated by the following figure:

)i [(j]
t l " t t l " 1"
qi P firstl(qi) pj q firstl(pj)

- Neighbors and degree. The neighbors, and thus the degree, of a degree-d node
vi in G - T can be obtained in O(d) time as follows.

�9 For every position p such that qi < P < firstl(qi), we output vj, where
pj = lastl(match(p)). ((vi,vj) is an edge in G - T with j > i.)

�9 For every position q such that Pi < q < firstl(Pi), we output vj, where
qy = lastl (match(q)). ((v~,vj) is an edge in G - T with j < i.)

The bit count. Clearly ISI = 2n+ 2 (m - n) = 2m. Since there are four symbols in
S, S can be encoded by 4m bits. We can improve the bit count by the following:

L e m m a 3. Let S be a string of p parentheses and b brackets that satisfies Prop-
erty A. Then S can be encoded by a string of 2p + b + o(p + b) bits, from which
each S[i] can be determined in O(1) time.

Proof. Let $1 and $2 be two binary strings defined as follows.

- Sl[i] = 1 if and only if S[i] is a parenthesis, 1 < i < p + b.
- S2[j] = 1 if and only if the j - th parenthesis in S is open, 1 < j < p.

Each S[i] can be determined from S1 + $2 + a(S1) in O(1) time as follows. Let
j = rank(Sl , i , 1). If Sl[i]= 1, S[i] is a parenthesis. Whether it is open or close
can be determined from S2[j]. If Sl[i] = O, S[i] is a bracket. Whether it is open
or close can be determined from S2[select(S1, rank(Sl , i , 1), 1)] by Proper ty A.
[]

We summarize the above arguments as follows.

L e m m a 4. A simple triconnected plane graph of n nodes and m edges has a
weakly convenient encoding that has 2m + 2n + o(n) bits.

3.2 T r i c o n n e c t e d P l a n e G r a p h s

We adapt all notation of w to this subsection. We first show that the weakly
convenient encoding for a simple triconnected plane graph G given in w can
be further shortened to 2(m + n - nl) + o(n), where nl is the number of leaves
in T. We then give a convenient encoding for G that has 2m + 2n + o(n) bits.
Finally we augment both encodings to handle multiple edges.

126

Let vi be a leaf of T, where 2 < i < n. By definition of T and Definition 1,
vi is adjacent to a higher-numbered node and a lower-numbered node in G - T.
This implies that (i is immediately succeeded by a] , and)i is immediately
succeeded by a [, for every such vi. Let P be the string obtained from S by
removing a] that immediately succeeds (i, and removing a [that immediately
succeeds) i for every leaf vi of T, where 2 < i < n. If each S[j] were obtainable
in O(1) time from P + a (P) , the string S could then be replaced by P + a(P) .
This does not seem likely. However, we can show that there exists a string Q of
length IPI, each Q[i] can be obtained from P + a (P) in O(1) time, such that
P + a(P, Q) is a weakly convenient encoding for G. Since S satisfies Proper ty A
and P is obtained from S by removing some brackets, P also satisfies Proper ty
A. Since P has 2n parentheses and 2(m - (n - 1) - nl) brackets, by Lemma 3
G has a weakly convenient encoding of 2(m + n - nl) + o(n) bits.

Next we augment our weakly convenient encoding for G to a convenient one.
Note that the degree ofvi in G - T can be obtained in O(1) time from P+(~(P, Q).
It remains to supply O(1)-time degree query for T. By Theorem 3 we know that
nl + o(n) more bits suffices. Therefore there exists a (2m + 2n - nl + o(n))-bit
convenient encoding for G that can be obtained in O(m + n) time.

The above convenient encoding can be extended to handle multiple edges as
follows. Let Ga be a multiple graph obtained from G by adding some multiple
edges between nodes that are adjacent in G - T. Note that the above arguments
in this subsection also hold for Ga exactly the same way. Suppose that Ga has m~
edges. Then G~ has a weakly convenient encoding of 2(ma + n - n l) + o(ma + n)
bits, from which the degree of a node in G~ - T can actually be determined in
O(1) time. Let Gb be a multiple graph obtained from Ga by adding some multiple
edges between nodes that are adjacent in T. Suppose that Gb has mb edges. Let
Tb be the union of multiple edges of Gb between the nodes that are adjacent in T.
In order to obtain a convenient encoding for Gb, it remains to supply O(1)-time
query for the degree of a node in Tb. Clearly Tb has mb -- ma + n -- 1 edges. By
Theorem 3, 2(rob -- m~ + n -- 1) -- n + nl + o(mb) more bits suffice.

We summarize the subsection as follows.

L e m m a 5. Let G be a trieonnected plane graph of n nodes and m edges. Let
Gs be the simple version of G, which has ms edges. Let nt be the number of
leaves in a canonical spanning tree of Gs. Then G (resp., Gs) has a convenient
encoding of 2m + 3n - nl + o(m + n) (resp., 2ms + 2n - nl + o(n)) bits. All these
encodings can be obtained in linear time.

3.3 Plane T r i a n g u l a t i o n s a n d G e n e r a l P l a n e Graphs

L e m m a 6. Let G be a plane triangulation of n >_ 3 nodes and m edges. Let Gs
be the simple version of G, which has ms = 3n - 6 edges. Then G (resp., Gs)
has a convenient encoding of 2m + 2n + o(m + n) (resp., 2ms + n + o(n)) bits.
All these encodings can be obtained in linear time.

L e m m a 7. Let G be a plane graph of n nodes and m edges. Let Gs be the simple
version of G, which has ms edges. Let k be a positive constant. Then G has a
convenient encoding of 2m+ 5~n+o(m+n) bits and a weakly convenient encoding
o/2m+4 n+o(m+n) bits. as a convenient encoding of
bits and a weakly convenient encoding of yms4 + 5n + o(n) bits.

127

4 M o r e C o m p a c t S c h e m e s

In some applications, the only requirement for the encoding is to reconstruct the
graph, no queries are needed. In this case, we can obtain even more compact
encodings for simple triconnected and triangulated plane graphs.

Let G be a simple triconnected plane graph. Let T be a canonical spanning
tree of G. Let v l , . . . , v n be the counterclockwise preordering of T. By using
techniques in [8], it can be shown that this ordering is also a canonical ordering of
G. (In Figure 2, the canonical ordering shown is the counterclockwise preordering
of T.) This special canonical ordering is used in our encoding.

Let I1 , . . . , IK be the interval partit ion corresponding to the canonical order-
ing. G can be constructed from a single edge (vl, v2) through K steps. The j - th
step corresponds to the interval Ij = [k, k + q]. There are two cases:

Case 1: A single node Vk is added.
Case 2: A chain of q + 1 (q > 0) nodes Vk, . . . , Vk+q is added.
The last node added during a step is called a type a node. Other nodes are

type b nodes. Thus the single node vk added during a Case i step is of type a.
For a Case 2 step, the nodes Vk,. . . ,Vk+q-1 are of type b and Vk+q is of type a.

Consider the interval Ij = [k, k + q]. Let c t (= v l) ,c2 , . . . ,ct(= v2) be the
nodes of the exterior face Hk-1 ordered consecutively along Hk-1 from left to
right above the edge (vl, v2). We define the following terms.

Case 1. Let ce and cr (1 < ~ < r _< t) be the leftmost and rightmost neighbors
of Vk in Hk-1, resp. The edge (ce, Vk) is in T. The edge (cr, Vk) is called an external
edge. The edges (ci,vk) where e < i < r, if present, are internal edges.

Case 2. Let ce and c~ (1 < g < r < t) be the neighbors of Vk and Vk+q in
Hk-1, resp. The edges (ce, Vk), (Vk, Vk+l) , . . . , (Vk+q-1, Vk+q) are in T. The edge
(c~, Vk) is called an external edge.

For each vk (1 < k < n - 1), let B(vk) denote the edge set {(vk,vj) I k < j} .
By Definition 1 and Lemma 1, the edges in B(vk) show the following pat tern
around vk in counterclockwise order: A block (maybe empty) of tree edges;
followed by at most one internal edge; followed by a block (maybe empty) of
external edges. Next, we show that if we know the sets B(Vk) (1 < k < n - 1)
and the type of Vk (3 < k < n), then we can uniquely reconstruct G.

First the edge (vl,v2) is drawn. Then we perform the following K steps.
The j - th step processes Ij = [k, k + q]. Before the j - th step, the graph Gk-1
and its exterior face Hk-1 has been constructed. We need to determine the
leftmost neighbor ce and the rightmost neighbor cr of the nodes added in this
step. We know (ce, vk) is a tree edge in T. Since v l , . . . , vn is the counterclockwise
preordering of T, ce is the rightmost node tha t has a remaining tree edge and cr
is the leftmost node that is to the right of ct and has a remaining external edge.
There are two cases:

If vk is of type a, this is a Case 1 step and Vk is the single node added during
this step. We add the edges (ct,vk) and (c~,vk). For each ci with e < i < r, if
B(ci) contains an internal edge, we also add the edge (ci, Vk).

If vk is of type b, this is a Case 2 step. Let q be the integer such that
Vk, Vk+l, . . . ,Vk+q-1 are of type b and Vk+q is of type a. The chain Vk, . . . ,Vk+q
is added between ct and c~.

This completes the j - th step. When the process terminates, we obtain the
graph G. Thus, if we can encode the type of each v~ and the sets B(vk) 1 <

128

k _< n - 1, then we get an encoding of G. We first define the type of a set B(vk),
which tells us the types of the edges contained in B(vk). We use T to denote the
tree edges, X the external edges, and I the internal edges. The type of B(vk)
is a combination of the symbols T, X, I. For examples, if B(vk) has type T X I ,
then B(vk) contains tree edges, external edges and an internal edge, and so on.

We further divide type a nodes Vk into two subtypes: If B(Vk) contains no
tree edges, then vk is a type al node. If B(Vk) contains tree edges, then vk is a
type a2 node. For a type b node Vk, since Vk is not the last node added during
a Case 2 step, by the definition of T, B(vk) contains at least one tree edge.

Our encoding of G uses two strings $1 and $2 both using three symbols 0, 1, *.
The length of $1 is n. Silk] (1 < k < n) indicates whether Vk is of type al , a2, or
b. $2 encodes the sets B(vk) (1 < k < n - 1). Each B(vk) is specified by a code
word, denoted by Code[vk]. $2 is the concatenation of Code[Vk] (1 < k < n - 1).
The length of Code[vk] equals to the number of the edges in B(Vk). Depending
on the type of Vk and the type of B(vk), Figure 3 gives the format of Code[vk].
In the table, the number of the tree edges (external edges, resp.) in B(vk) is
denoted by a (fl, resp). 1 ~ denotes a string of a copies of 1, and so on. A symbol
T (resp., X or I) under Code[vk] denotes the portion in Code[vk] corresponding
to the tree (resp., external or internal) edges.

Type of vk
al

Type of B(vk) Code[vk] Type of vk
X I 1 ~ 0 a2 or b

X I

I 0
I

X 1~-~*
X

Type of B(vk)
T

T X I

TX

TI

Fig. 3. Code Word Table.

Code[vk]
OCt-- I ,

T
1 ~ 0 ~ ,

T X I

1,~-10 0~-I 1
T X

1 r , v v
T I

From $1, $2 and the Code Word Table, we can easily recover the type of
each Vk and the sets B(Vk). It is straightforward to implement the encoding and
decoding procedures in O(n) time. The length of $1 is n. The length of $2 is m.
We use the binary representation S of $1 and $2 to encode G. Since both $1
and $2 use 3 symbols, ISI = log3(n + m). Thus we have the following:

L e m m a 8. Any simple triconnected plane graph with n nodes and m edges can
be encoded using at most log 3 (n+m) bits. Both encoding and decoding procedures
take O(n) time.

We can improve Lemma 8 as follows. Let G* be the dual of G. G* has f
nodes, m edges and n faces. Since G is triconnected, so is G*. Furthermore, if
n > 3, then f > 3 and G* has no self-loop or multiple edge. Thus, we can use
the coding scheme of Lemma 8 to encode G* with at most l og3 (f + m) bits.
Since G can be uniquely determined from G*, to encode G, it suffices to encode

129

G*. To make S shorter, if n < f , we encode G using at most log 3(n + m) bits;
otherwise, we encode G* using at most l og3(f + m) bits. This new encoding

uses at most log3(min{n, f} + m) bits. Since mAn{n, f} _< ~2+-~, the bit count is
at most log3(1.5m + 1) by Euler's formula n + f = m + 2. We use one extra bit
to denote whether we encode G or G*. Thus we have proved the following:

T h e o r e m 4. Any simple triconnected plane graph with n nodes, m edges and f
faces can be encoded using at most log3(min{n, f} + m) + 1 _< 1.5(log3)m + 3
bits. Both encoding and decoding take O(n) time.

T h e o r e m 5. Any simple plane triangulation of n nodes and m edges can be
encoded using 4n - 7 = ~ + 1 bits. Both encoding and decoding take O(n) time.

References

1. T. BELL, J. G. CLEARY, AND I. WITTEN, Text Compression, Prentice-Hall, 1990.
2. D. R. CLARK, Compact Pat Tree, PAD thesis, University of Waterloo, 1996.
3. I~I. D. FRAYSSEIX, ,~. PACH, AND R. POLLACK, How to draw a planar graph on a

grid, Combinatorica, 10 (1990), pp. 41-51.
4. H. GALPERIN AND A. WIGDERSON, Succinct representations of graphs, Information

and Control, 56 (1983), pp. 183-198.
5. A. ITAI AND M. RODEH, Representation of graphs, Acta Informatica, 17 (1982),

pp. 215-219.
6. G. JACOBSON, Space-e~cient static trees and graphs, in proc. 30th FOCS, 30 Oct.-

1 Nov. 1989, pp. 549-554.
7. S. KANNAN, N. NAOR, AND S. RUDICH, Implicit representation of graphs, SIAM

Journal on Discrete Mathematics, 5 (1992), pp. 596-603.
8. G. KANT, Drawing planar graphs using the lmc-ordering (extended abstract), in

proc. 33rd FOCS, 24-27 Oct. 1992, pp. 101-110.
9. ~ . , Algorithms for Drawing Planar Graphs, PAD thesis, Univ. of Utrecht, 1993.

10. G. KANT AND X. HE, Regular edge labeling of 4-connected plane graphs and its
applications in graph drawing problems, TCS 172 (1997), pp. 175-193.

11. M. Y. KAO, M. FORER, X. HE, AND B. RAGHAVACHARI, Optimal parallel algo-
rithms for straight-line grid embeddings of planar graphs, SIAM Journal on Discrete
Mathematics, 7 (1994), pp. 632-646.

12. M. Y. KAO AND S. H. TENG, Simple and efficient compression schemes for dense
and complement graphs, in Fifth Annual Symposium on Algorithms and Compu-
tation, LNCS 834, Beijing, China, 1994, Springer-Verlag, pp. 201-210.

13. K. KEELER AND J. WESTBROOK, Short encodings of planar graphs and maps,
Discrete Applied Mathematics, 58 (1995), pp. 239-252.

14. J. I. MUNRO, Tables, in proc. of 16th Conf. on Foundations of Software Technology
and Theoret. Comp. Sci., LNCS 1180, 1996, Springer-Verlag, pp. 37-42.

15. J. I. MUNRO AND V. RAMAN, Succinct representation of balanced parentheses,
static trees and planar graphs, in proc. 38th FOCS 20-22 Oct. 1997.

16. M. NAOR, Succinct representation of general unlabeled graphs, Discrete Applied
Mathematics, 28 (1990), pp. 303-307.

17. C. H. PAPADIMITRIOU AND M. YANNAKAKIS, A note on succinct representations
o] graphs, Information and Control, 71 (1986), pp. 181-185.

18. W. SCHNYDER, Embedding planar graphs on the grid, in Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138-148.

19. G. TURAN, On the succinct representation of graphs, Discrete Applied Mathemat-
ics, 8 (1984), pp. 289-294.

