
The Visual Computer manuscript No.
(will be inserted by the editor)

Wan-Chun Ma · Chun-Tse Hsiao · Ken-Yi Lee · Yung-Yu Chuang · Bing-Yu Chen

Real-Time Triple Product Relighting Using
Spherical Local-Frame Parameterization

Abstract This paper addresses the problem of real-time ren-
dering for objects with complex materials under varying all-
frequency illumination and changing view. Our approach ex-
tends the triple product algorithm by using local-frame pa-
rameterization, spherical wavelets, per-pixel shading and vis-
ibility textures. Storing BRDFs with local-frame parameter-
ization allows us to handle complex BRDFs and incorporate
bump mapping more easily. In addition, it greatly reduces
the data size compared to storing BRDFs with respect to the
global frame. The use of spherical wavelets avoids uneven
sampling and energy normalization of cubical parameteri-
zation. Finally, we use per-pixel shading and visibility tex-
tures to remove the need for fine tessellations of meshes and
shift most computation from vertex shaders to more pow-
erful pixel shaders. The resulting system can render scenes
with realistic shadow effects, complex BRDFs, bump map-
ping and spatially-varying BRDFs under varying complex
illumination and changing view at real-time frame rates on
modern graphics hardware.

Keywords All-frequency relighting· Precomputed radi-
ance transfer· Local frame· Spherical wavelets· Real-time
rendering

1 Introduction

Realistic rendering of objects with complex materials, com-
plex natural lighting and intricate shadowing effects has many
applications. Conventional approaches could take minutes
per frame to render these effects. Recently, with the advance-
ment of graphics hardware, several methods based on pre-
computation have been proposed to enable interactive ren-

Wan-Chun Ma
Communication and Multimedia Laboratory
Department of Computer Science and Information Engineering
National Taiwan University
Tel.: +886-2-23625336
Fax: +886-2-23621776
E-mail: alexma98@gmail.com

Fig. 1 A typical result with the techniques of this paper. Our method
can handle complex materials. Here, both theLobstermodel and the
floor are mapped with SBRDFs. Illumination and viewpoint canbe
changed in real-time. These images are of1024 × 768 resolution
and rendered at 15fps to 45fps using an ATI X1900 XTX.

dering for rich lighting effects, such as precomputed radi-
ance transfer using spherical harmonics by Sloanet al. [15,
16] and all-frequency relighting using wavelets by Nget al.[8,
9]. The former allows changing lighting and viewpoint in
real-time, but limited to low-frequency illumination. Thelater
captures all-frequency lighting effects, but requires a few
seconds for manipulation of lighting and viewpoint. This
paper proposes a method for real-time rendering of objects
with complex materials under varying all-frequency illumi-
nation and changing view. Our approach extends the triple
product approach proposed by Nget al. [9] in the following
ways:

– The use of local-frame parameterization for shading.
We change the coordinate system for shading from the
global frame used in previous wavelet-based relighting
papers into a local frame. Since both of the visibility
function and BRDF stay in the local frame, it is not nec-
essary to recompute their wavelet coefficients when chang-
ing viewing or lighting condition. Storing BRDF in a
local frame also enables us to easily handle complex
BRDFs and incorporate bump mapping. In addition, it
greatly reduces the data size compared to storing BRDF



2

in the global frame. Local-frame parameterization has
been used in spherical harmonics-based relighting [15].
For spherical harmonics, it is an obvious choice since
spherical harmonics can be easily rotated and every func-
tion should just be parameterized in its natural domain,
global for lighting and local for BRDFs. However, for
wavelet-based relighting, a trade-off has to be made when
choosing between global and local frames since rotation
is not easy for a wavelet basis. Previous wavelet-based
work [8,9,19–21] uses global-frame parameterization.
In this paper, we propose to use local-frame parameteri-
zation and show its advantages.

– The use of spherical wavelets for avoiding uneven sam-
pling. Since functions involved in the rendering equa-
tion, illumination, visibility and BRDF, are all spherical
functions, it makes sense to represent them using spher-
ical wavelets [12] to avoid uneven sampling and energy
normalization in cubical parameterization.

– The use of per-pixel shading and visibility textures
for efficient GPU implementation. Previous relighting
approaches require a fine tessellation to capture mate-
rial and visibility variations over a surface even if the
surface is flat. It is because rendering is performed on
a per-vertex basis. Instead, we use per-pixel shading to
shift computation from vertex shaders to more powerful
pixel shaders for a more efficient GPU implementation.
In addition, we sample the visibility functions over a sur-
face and store them in avisibility texture. It allows a fine
tessellated mesh to be replaced with a coarse mesh along
with a visibility texture.

With these changes, our system can render scenes with
realistic shadowing effects, complex BRDFs, bump mapping
and spatially-varying BRDFs (SBRDFs) under varying com-
plex illumination and changing viewpoint in real-time on
modern graphics hardware. Figure 1 demonstrates rendering
of a scene with SBRDFs under complex illumination. Note
how the rich lighting effects on the ground depends on the
lighting conditions.

We have carefully designed our method so that it is suit-
able for GPU implementation. The resulting system achieves
comparable rendering quality with the triple product wavelet
relighting [9] but it is much faster than previous methods. In
addition, our method is capable of rendering some effects
that have not been demonstrated before, such as bump map-
ping and SBRDFs for all-frequency relighting. Furthermore,
our method also allows all-frequency material editing such
as changing the glossiness number in Phong model in a few
seconds.

2 Related Work

In this section, We briefly review related work in three cat-
egories, precomputed radiance transfer, wavelet-based re-
lighting and spherical wavelets.

Precomputed radiance transfer (PRT).PRT is an ef-
ficient precomputation method for realistic image synthe-

sis. Most PRT papers use spherical harmonics as the basis
function [5,6,11,15–17]. Using a local frame for shading
is widely adopted in spherical-harmonics-based PRT tech-
niques [5,6,15,17] because spherical harmonics basis has a
good rotational property. Bump mapping [14] and anisotropic
BRDFs [5] can be integrated into spherical harmonics PRT
framework. However, the biggest problem of spherical har-
monics is that it can only represent low-frequency lighting
effects and requires a very large number of coefficients when
modeling high-frequency lighting. Thus, this restricts the
use of spherical harmonics PRT to mostly diffuse-like BRDFs
and low-frequency lighting environments.

Wavelet-based and the other all-frequency relighting
techniques.The use of wavelets as basis enables adaptive
all-frequency relighting of complex scenes [7–9,19–21].
However, most of the up-to-date techniques project spher-
ical functions onto cubemaps. Such an uneven sampling, es-
pecially occurring at corners, needs normalization to keep
the energy of the functions consistent. In addition, transport
functions (or simply BRDFs) in a global frame require more
space for storage, and are more difficult to be coupled with
local-frame shading techniques such as bump mapping. Re-
cently, new techniques have been proposed to model trans-
port and lighting functions for more glossy materials [3] or
better performance [18].

Spherical wavelets.Spherical wavelets have been used
for BRDF representation [12], texture processing [13], anal-
ysis of fluid flow [10], image-based relighting [22] and other
applications. Schörderet al.[12] are the first to introduce the
concept of spherical wavelets to graphics community. They
have demonstrated the potential of using spherical wavelets
for rendering by representing a partial BRDF defined on
a single hemisphere by fixing the incoming direction. Our
spherical wavelets are derived from the studies on the or-
thogonality of triangular Haar spherical wavelet basis by
Bonneau [1] and Nielsonet al. [10].

3 Algorithm

We develop our algorithm based on the triple product formu-
lation introduced by Nget al. [9] which we describe below
for completeness and clarity for symbols. This framework is
based on the rendering equation for direct illumination.

B(x, ωo)=

∫

Ω

L(x, ωi)V (x, ωi)ρ(x, ωi,ωo)(ωi ·n(x))dωi, (1)

whereB is the radiance function of positionx and outgoing
direction1 ωo, L andV are the lighting and visibility func-
tions respectively,ρ is the BRDF andn is the surface normal.
By assuming the lightingL is a distant illumination function
(environment map) and incorporating the termωi ·n(x) into
the BRDF function as the functioñρ, Equation 1 becomes

B(x, ωo) =

∫

Ω

L(ωi)V (x, ωi)ρ̃(x, ωi, ωo)dωi. (2)

1 Note thatωo is a function ofx for a given view. Hence,ωo is
actually an abbreviation forωo(x).



3

For a given view, for each positionx, we can infer the corre-
sponding outgoing directionsωo and calculate the reflected
colorBx,ωo by the following triple product integration,

Bx,ωo =

∫

Ω

L(ωi)V
x(ωi)ρ̃

x,ωo(ωi)dωi, (3)

whereV x is the visibility function for the given positionx;
similarly, ρ̃x,ωo is ρ̃ for the given positionx and the given
directionωo. As shown by Nget al. [9], by expanding the
spherical functions,L, V x andρ̃x,ωo , with some appropriate
basis functionsΨ(ω),

L(ω) =
∑

i

LiΨi(ω),

V x(ω) =
∑

j

V x

j Ψj(ω),

ρ̃x,ωo(ω) =
∑

k

ρ̃
x,ωo

k Ψk(ω),

(4)

whereLi, V x

j andρ̃x,ωo

k are coefficients for the spherical il-
lumination, visibility and BRDF functions respectively, Equa-
tion 3 can be written in terms of these basis functions,

Bx,ωo=
∑

i

∑

j

∑

k

LiV
x

j ρ̃
x,ωo

k

∫

Ω

Ψi(ω)Ψj(ω)Ψk(ω)dω. (5)

The above equation is complicated to evaluate because of
the triple product integrals. Nget al. call these integrals the
tripling coefficientsCijk as

Cijk =

∫

Ω

Ψi(ω)Ψj(ω)Ψk(ω)dω. (6)

They have devised and analyzed procedures to evaluateCijk

for different basis functions including points, 2D Fourier
series, spherical harmonics and 2D Haar wavelets [9]. For
the relighting application in Equation 5, they use cubemap
Haar wavelets as the basis functions and parameterize the
spherical lighting, visibility and BRDF functions using a
global frame. In the following, we introduce our extensions
of spherical wavelets, local-frame parameterization, per-pixel
shading and visibility textures, to make the original triple
product algorithm more flexible and efficient.

3.1 Spherical wavelets

Since the lighting, visibility and BRDF functions in Equa-
tion 3 are all spherical functions, we choose to use spherical
wavelets [12] as the basis functions to avoid uneven sam-
pling and energy normalization of cubical parameterization
used in most previous work [7–9,19]. We believe that the
spherical parameterization is a natural and better choice than
cubical one. Actually, spherical wavelets have been used for
representing illumination and BRDFs by Schröderet al.[12].

Many spherical wavelet bases have been proposed, such
as lifted Butterfly basis and Bio-Haar basis. We have derived

(a) (b) (c)

Fig. 2 Geodesic sphere construction. Staring with the icosahe-
dron ((a) subdivision level 0), successive levels (b,c) aregenerated
by subdividing triangles into four sub-triangles, accomplished by
adding geodesic edges connecting midpoints of original edges.

T
l+1

4i+2
T
l

i T
l+1

4i

T
l+1

4i+1

T
l+1

4i+3

Fig. 3 Subdivision of a geodesic triangleT l
i into four sub-triangles

T l+1

4i , T l+1

4i+1, T l+1

4i+2 andT l+1

4i+3 .

1

1 1

1 1
1

-1

-1
1

1

-1

-1 -1- 1

1

1

-1 -1

(a) (b) (c) (d)

Fig. 4 Scaling and wavelet functions. (a) scaling functionϕl
i. (b)

type-0 wavelet functionψl
i,0. (c) type-1 wavelet functionψl

i,1. (d)
type-2 wavelet functionψl

i,2.

our spherical wavelets based on the optimal triangular Haar
bases [1]. The construction of spherical wavelets relies on
the geodesic sphere construction shown in Figure 2. Staring
with an icosahedron (subdivision level 0), for each subdi-
vision step, each geodesic triangle is divided into four sub-
triangles by bisecting the geodesic edges at their mid-points.
LetT l

i be thei-th triangle at the subdivision levell. For level
l, we define thei-th scaling functionϕl

i(ω) as

ϕl
i(ω) =

{

1 if ω ∈ T l
i

0 otherwise.

Let T l+1
4i , T l+1

4i+1, T l+1
4i+2 andT l+1

4i+3 be the four sub-triangles
of T l

i (Figure 3) and the area for each of the twenty triangles
at level 0 equal 1, denoting asA0 = 1. According the sub-
division rule, we haveAl+1 = 1

4Al. Hence, the areaAl of
a triangleT l

i at levell is equal to4−l. We then define three
types of wavelet functions associated with the domainT l

i at



4

level l as

ψl
i,0(ω) = ϕl+1

4i (ω) − ϕl+1
4i+1(ω) − ϕl+1

4i+2(ω) + ϕl+1
4i+3(ω)

ψl
i,1(ω) = ϕl+1

4i (ω) − ϕl+1
4i+1(ω) + ϕl+1

4i+2(ω) − ϕl+1
4i+3(ω)

ψl
i,2(ω) = ϕl+1

4i (ω) + ϕl+1
4i+1(ω) − ϕl+1

4i+2(ω) − ϕl+1
4i+3(ω)

Figure 4 illustrates the scaling function and the wavelet
functions. This set of level-0 scaling and wavelet functions
Ψ = {ϕ0

i0
, ψ1

i1,0, ψ
1
i1,1, ψ

1
i1,2, . . . ψ

l
il,0
, ψl

il,1
, ψl

il,2
, . . . } forms

a basis for spherical functions, whereil ∈ {0, 1, 2, . . . , 20 ·
2l − 1}. The setΨ is an orthogonal basis because

∫

Ω

ϕ0
i (ω)ϕ0

i′(ω)dω = A0δii′ = δii′

∫

Ω

ϕ0
i (ω)ψl

i′,t(ω)dω = 0

∫

Ω

ψl
i,t(ω)ψl′

i′,t′(ω)dω = Alδll′δii′δtt′ ,

whereδij is Dirac’s delta function. Note thatΨ is not or-
thonormal. We could scale the wavelets properly to make the
basis orthonormal, but we prefer to leave them unnormal-
ized so that they reflect the underlying energy appropriately.
We have derived the tripling coefficients for the spherical
wavelets defined above:

Tripling Coefficient Theorem for Spherical Wavelets.Here,
a tripling coefficient defined in Equation 3 for our spherical
wavelets is non-zero only for the following three cases:

case 1: All three bases are the same scaling function.
∫

Ω

ϕ0
i (ω)ϕ0

i (ω)ϕ0
i (ω) =

∫

Ω

ϕ0
i (ω)dω = 1.

case 2: All three are different types of wavelets at the same
level with the same index.

∫

Ω

ψl
i,0(ω)ψl

i,1(ω)ψl
i,2(ω) =

∫

Ω

ϕl
i(ω)dω = 4−l.

case 3: Two are identical wavelets at levell and their do-
main is overlapped with the domain of the third one who is
at a strictly coarser levell′, i.e. , l′ < l,
∫

Ω

ψl
i,t(ω)ψl

i,t(ω)ϕl′

i′ (ω)dω =

∫

Ω

ϕl
i(ω)ϕl′

i′(ω)dω = 4−l

∫

Ω

ψl
i,t(ω)ψl

i,t(ω)ψl′

i′,t′(ω)dω =

∫

Ω

ϕl
i(ω)ψl′

i′,t′(ω)dω=±4−l,

where the sign depends on which part the coarser-level ba-
sis overlaps with the other two’s domain. It is not surprising
that our spherical wavelet tripling coefficients are similar to
2D Haar wavelet tripling coefficients proven by Nget al. [9]
since spherical wavelets are isomorphic to 2D Haar wavelets.

symbol meaning

n
ωi

l sampling resolution of a lighting function
rl number of precomputed rotations of lighting
nwi

v sampling resolution of a visibility function
nx number of vertices
nωo

ρ number of samples for outgoing directions
nωi

ρ sampling resolution of a BRDF function
rρ number of precomputed rotations of normals
nρ number of materials

Table 2 Symbols for storage requirement calculation.

3.2 Local-frame parameterization

To the best of our knowledge, all relighting papers using
wavelets [8,9,19] parameterize the lighting, visibility and
BRDF functions with respect to the global frame. That is,
the integration domainΩ in Equation 3 is defined over the
global frame and the same for all positionsx when calculat-
ingBx,ωo . It is a natural choice to use the global frame since
Equation 3 is defined with respect to the global frame. In
such a setting, we only need to store a global lighting func-
tion. However, each positionx has to store its own BRDF
function even if they are made of the same material. It is
because BRDF is defined with respect to the local frame de-
fined atx. It requires a lot of storage to store a BRDF func-
tion perx considering that BRDF is a 4D function. To save
space, Nget al. [9] precompute several rotated versions of
the BRDF function and usen(x) to look up the appropriate
rotated BRDF to be used forx. It is why ρ̃ in Equation 3
depends onx. In this setting, rotating lights is achieved by
rotating and resampling the lighting function on the fly and
changing views only involves using differentx andωo to
look up the BRDF table.

We propose to parameterize these functions using the lo-
cal frame defined for each vertex. With the local-frame pa-
rameterization, when evaluating Equation 3 for a position
x, the integration domain becomes defined over the local
frame, which is established byx’s normaln(x) and tangent
t(x). Hence, in this setting, Equation 3 becomes

Bx,ωo =

∫

Ωx

Lx(ωi)V
x(ωi)ρ̃

ωo(ωi)dωi, (7)

whereΩx is the spherical domain defined byx’s local frame
andLx is the global lighting function reparameterized inx’s
local frame2. Using this parameterization, the object of the
same material can share the same BRDF table. However, the
global illumination function needs to be rotated into differ-
ent local frames for differentx’s during rendering. Unfor-
tunately, as cubical 2D wavelets, we are not aware of any
efficient algorithm to rotate spherical wavelets. To solve this
problem, similar to Nget al.’s solution, we precompute a
set of rotated versions of the lighting function by uniformly
sampling Euler angles and usex’s normal to look up the
proper rotated lighting functionLx when renderingx.

2 Note that, while using the same symbol,V x(ωi) in Equations 3
and 7 are parameterized with respect to different frames.



5

Table 1 Comparisons between global-frame parameterization and local-frame parameterization.

A

B

An

Bn

L

ρ

ρ

A B

An

Bn

L L

A

B

ρ

ρ

global frame

A B

An Bn

L LA B

At Bt

ρ ρ

local frame

rendering equation Bx,ωo =
R

Ω
L(ωi)V

x(ωi)ρ̃
x,ωo(ωi)dωi Bx,ωo =

R

Ωx

Lx(ωi)V
x(ωi)ρ̃

ωo(ωi)dωi

lighting functionL one copy multiple rotated versions indexed by normaln(x)
visibility function V one copy perx one copy perx
BRDF functionρ̃ multiple rotated versions indexed by normaln(x) one copy per material
storage requirement∗ n

ωi

l + nxn
wi
v + nρrρn

ωo

ρ nωi
ρ rln

ωi

l + nxn
wi
v + nρn

ωo

ρ nωi
ρ

∗ The storage requirement is estimated without other parameterization and data compression. Related symbols are definedin Table 2

In local-frame parameterization, only one BRDF table
is required for a material, but multiple pre-rotated lightings
are required. On the contrast, the global-frame parameteri-
zation only needs to store a lighting function but has to store
multiple rotated BRDF functions. We argue that the local-
frame approach is more storage efficient since it stores mul-
tiple 2D lighting functions while the global-frame approach
would have to store multiple 4D BRDF functions, as indi-
cates by Clarberget al. [2]. There is only one lighting func-
tion at a time, but there could be several BRDF functions.
Using the symbols defined in Table 2, the storage require-
ment isnωi

l +nxn
wi

v +nρrρn
ωo

ρ nωi

ρ for the global-frame ap-
proach andrln

ωi

l + nxn
wi

v + nρn
ωo

ρ nωi

ρ for the local-frame
approach without other parameterization and compression.
Table 1 compares these two parameterization schemes. In
general,(rl−1)nωi

l is less thannρ(rρ−1)nωo

ρ nωi

ρ , justifying
our choice of the local-frame parameterization. Hence, the
local-frame parameterization greatly reduces the data size
of BRDFs and allows us to use more materials. For exam-
ple, we can use spatially-varying BRDF, a composition of
multiple BRDFs. In addition, local-frame parameterization
allows us to separate the precomputation of BRDFs from the
knowledge of normals. Thus, the precomputation can be per-
formed separately and it becomes straightforward to apply
bump maps. On the other hand, the global-frame approach
is better for applications which requires dynamic lighting.

To allow for anisotropic materials, we actually sample
the lighting function with both normal and tangent, making
the lighting function a 3D array. Again, it would cause a
larger storage increase to extend global-frame parameteriza-
tion to support anisotropic materials.

3.3 Per-pixel shading and visibility textures

Most existing all-frequency relighting approaches evaluate
Equation 7 for each vertexx and then interpolate vertices’
colors to rasterize visible triangles. This per-vertex shading

per-vertex shading

per-pixel shading

Fig. 5 Comparisons between per-vertex shading and per-pixel shad-
ing. The left column shows rendering of a statue model with differ-
ent shading methods. Closeup renderings of the same model from
other view are shown on the right. Per-pixel shading clearlyyields
substantial improvement over per-vertex shading.

approach can be described more precisely in pseudocode:

for each visible triangleT do
for each ofT ’s verticesx1, x2 andx3 do

evaluate Equation 7 forxi to obtain its colorBxi

end for
for each pixelp within T do

evaluateBp by interpolatingBx1 ,Bx2 andBx3

end for
end for



6

Instead of interpolating colors, we interpolate functionsand
use the interpolated functions to evaluate color for each vis-
ible pixelp. Here is a more precise description of per-pixel
shading method:

for each visible triangleT with verticesx1, x2, x3 do
for each pixelp within T do

obtainLp by interpolatingLx1 , Lx2 andLx3

obtainV p by interpolatingV x1 , V x2 andV x3

obtainρ̃p by interpolating̃ρωo(x1), ρ̃ωo(x2) andρ̃ωo(x3)

evaluate Equation 7 usingLp, V p, ρ̃p to obtainBp

end for
end for

Analogous to the comparison between Phong shading and
Gouraud shading, per-pixel shading renders more accurate
results than per-vertex shading with less vertices. Figure5
clearly shows the advantages of per-pixel shading over per-
vertex shading. In addition, per-pixel shading shifts most
computation (Equation 7) from vertex shaders to more pow-
erful pixel shaders. Per-pixel shading also allows us to better
render spatially varying material with mapping techniques
such as SBRDFs, texture mapping and bump mapping.

Another problem with per-vertex shading is that, to ob-
tain fine shadows, the models often have to be finely tessel-
lated. For example, to render very simple geometry such as a
floor (simply a quadrangle), we usually have to subdivide it
into tens of thousands of triangles to have a very high vertex
density on the floor for better rendering. This, however, takes
too much time for vertex processing. For faster rendering,
We propose to use visibility textures to reduce vertex count
required for fine shadows. To create a visibility texture fora
model, we first parameterize the model into a 2D(u, v)-map.
Figure 6(b) shows the mapping between triangles and the
resulting map for the dragon model (Figure 6(a)). We used
Maya to generate this parameterization. Better approaches
such as geometry image [4] could improve the utilization of
texture maps for better results. For each texel of this map,
we find its corresponding positionx on surface of the 3D
mesh and computex’s visibility function V x. The result is
a visibility texture map for the original model. In this map,
each “texel” represents a visibility function for some posi-
tion over the original surface by storing wavelet coefficients
of the associated visibility function. Figure 6(c) is the visi-
bility texture associated with the floor in Figure 6(a). At first
sight, this approach seems not too different from highly tes-
selated meshes since we just shift fine tessellation from ver-
tices to texels. However, mapping visibility as a texture over
the surface speeds up rendering by300% along with per-
pixel shading. One concern about visibility texture is about
the possible aliasing problem as most mapping techniques
have to face. Our argument is that one can just use a high-
resolution visibility map to avoid aliasing. In addition, mesh
tessellation faces similar aliasing problem as well.

In sum, to accurately rendering spatially varying mate-
rials, it requires highly tessellated meshes with per-vertex
shading. On the contrast, per-pixel shading along with vis-
ibility textures renders similar results in a shorter time by
using coarse meshes.

(a)Dragonwith a floor (b) texture space forDragon

(c) floor’s visibility texture (d)Dragon’s visibility texture

(e) Dragonwith a fine floor (f) rendering

Fig. 6 Illustrations and comparisons for visibility textures. The
models (a) are first parameterized in a 2D texture space ((b) for
Dragon). Visibility is sampled for each texel of the texture space
to synthesize a visibility texture ((c) for the floor and (d) for the
Dragonmodel). Without visibility textures, models have to be finely
tessellated (e) to have comparable rendering (f), but aboutthree
times slower.

4 Implementation

In this section, we discuss implementation details of our
real-time triple product relighting system.

4.1 Precomputation

At the precomputation stage, we need to compute and store
spherical wavelet coefficients forLx(ωi),V x(ωi) andρ̃ωo(ωi)
in Equation 7. For each spherical function, we sample its val-
ues at 5120 differentωi-directions. These directions are gen-
erated by subdividing an icosahedron for five levels. Discrete
spherical wavelet transform is then applied to these sam-
pled values to generate wavelet coefficients for the spher-
ical function. Thus, in our implementation,nωi

l = nwi

v =
nωi

ρ = 5120 before data compression. For a lighting func-
tion, we precompute32 × 16 × 32 rotations for32 × 16



7

reference adaptive top-only

Fig. 7 Comparisons between adaptive and top-only strategies. Top
row shows reference image and renderings, and the bottom row
shows error for each pixel.

different normals and32 tangent angles by uniform sam-
pling, thus,rl = 16384. For each material, we sample128×
64 ωo-directions, i.e.nωo

ρ = 8192, Hence, excluding stor-
age requirement for visibility, local-frame parameterization
would require roughly 170MB (without anisotropic mate-
rials) and 480MB (with anisotropic materials) before data
compression. On the contrast, global-frame parameteriza-
tion requires 82GB without anisotropic materials using for-
mulas in Table 1.

Fortunately, not all coefficients need to be stored. To de-
termine a strategy of selecting coefficients to store, we have
experimented with two different strategies. The first one is
adaptive, storing then largest area-weighted coefficients.
The second one is called top-only strategy, storing only the
n coefficients in the top level. Figure 7 shows a comparison
for them in terms of mean square errors. We have found that,
in general, the adaptive approach is better than the top-only
approach, but not by much as long asn is sufficiently large.
The reason why both have similar performances could be
explained by the tripling coefficient theorem for spherical
wavelet in Section 3.1. It implies that, for a triple product
to contribute, at least two of lighting, visibility and BRDF
functions must carry coefficients at the same level of details.
Since there is no way to predict where high-frequency parts
will coincide during precomputation, most high-frequency
coefficients are actually wasted because the other two func-
tions do not necessarily store high frequency there. Hence,
other than few occasional matches, storing top-level coef-
ficients first is a reasonable approach since they represents
more energy and are more likely to contribute. The top-only

20 coefficients 80 coefficients 320 coefficients

Fig. 8 A comparison of rendering with different number of coeffi-
cients, 20, 80 and 320.

approach is only worse than the adaptive approach for hard
shadows (whereV andL happens to have high-frequency
coefficients of the same level at the same place) and specu-
larity (whereρ andL matches). But, the top-only approach
is better suited for GPU rendering because of its regular-
ity. Thus, users have to make a trade-off between speed and
quality here.

To decide the number of coefficients to store, we have
performed experiments to determine the impact of number
on rendering quality. In general, we found that rendering
with 80 or 320 coefficients gives sufficient quality with real-
time performance. Figure 8 shows a comparison. After such
a reduction, typical storage usages for lighting and BRDF
are 11.5MB/46.1MB and 7.2MB/28.6MB (80/320) respec-
tively.

Since all the rendering computation is performed in GPU,
in order to accelerate the rendering pipeline, all the textures
are quantized to 8-bit RGBA, and tiled so that their sizes are
powers of two in order to enable hardware-based linear inter-
polation. For visibility texture, the texture size of per-vertex
interpolated visibility depends on the number of vertices,a
4096×4096 texture (maximum size) can support up to 204K
vertices. The size of the visibility texture depends on the UV
resolution of the model. We use a1024×1024×1283D tex-
ture for all results in this paper.

4.2 Rendering

Given the textures generated at the precomputation stage,
to render atx, we usex’s normal n(x) and tangentt(x)
to look up nearby lighting functions and obtain coefficients
Lx

i by interpolating coefficients of nearby lighting functions.
Similarly, we can retrieve coefficientsV x

j andρ̃ωo

k from the
the corresponding textures, and then apply the triple product
algorithm to evaluate Equation 7.

In our framework, spatially-variant BRDF can be ren-
dered easily by a linear combination of coefficients from two
different BRDF textures. It is also very simple to implement
bump mapping with local-frame parameterization by rotat-
ing the lighting function the same amount as the bump map



8

purely diffuse glossiness=16 glossiness=256

Fig. 9 Material editing of a glossyBuddhain Grace Cathedral.
The Buddhamodel is rendered using Phong model with different
glossiness numbers. The bottom row shows closeup views of the top
row. Our system allows changing parameters of BRDFs by sampling
new BRDFs on the fly in a few seconds.

indicates. Note that this is not a physically correct solution.
The visibility function should rotate accordingly but can’t
get rotated easily. However, in practice, we found this ap-
proximation works well visually.

5 Results

Rendering was performed and timings were collected on a
machine with Intel dual core Pentium D 3.2GHz with 2GB
memory and an ATI X1900 XTX with 512MB graphics mem-
ory. The rendering resolution is1024× 768. Table 3 lists the
average rendering speed under different settings for wavelet
coefficients and visibility estimation. The ‘visibility texture’
column, reports frame rates using visibility textures, while
the ‘interpolated visibility’ column reports frame rates of
rendering with estimated visibility by interpolating visibil-
ity functions of nearby vertices. In the case of interpolated
visibility, a floor of 26K triangles must be used to provide
comparable shadow effects.

Our system allows real-time rendering of objects with
complex materials. Figure 9 shows the results of a glossy
Buddha with different glossiness settings. Note that our sys-
tem could support interactive material editing. After adjust-
ing parameters of BRDFs, it typically takes 2 to 3 seconds
to resample the edited BRDF. Figure 10 demonstrates the ef-
fects for spatially-varying BRDFs under two different light-
ing conditions. Figure 11 shows the rendering of Ward’s
anisotropic model. We use a sphere as the model to clearly
demonstrate the effects of anisotropic models. Figure 12 dis-
plays bump mapping effects under two different lighting con-

Fig. 10 Rendering with spatially-varying BRDF. Both theDragon
model and the floor are mapped with SBRDFs and the scene is il-
luminated by theUffizi Galleryenvironment map with different ori-
entations.

Fig. 11 A sphere rendered with Ward’s anisotropic BRDF with
αx = 0.1 andαy = 1.0. The image on the left is illuminated
by an area light source while the image on the left is illuminated by
theGrace Cathedralenvironment map.

Model number ofvisibility texture interpolated visibility
vertices 80 320 80 320

Dragon 25k 97.4 38.4 21.5 8.5
XYZRGB 50k 46.6 16.9 14.7 6.9
Buddha 50k 43.5 17.6 15.1 6.8

Table 3 Frame rates (in fps) of rendering models in this section
with different numbers of coefficients and visibility estimation ap-
proaches.

ditions. Figure 13 shows complex shadowing effects from
multiple area light sources. Finally, Figure 14 demonstrates
the combination of these effects.

6 Conclusions and Future Work

We present extensions to the triple product all-frequency re-
lighting method based on spherical wavelets, local-frame pa-
rameterization and per-pixel shading. The resulting render-
ing algorithm, which is implemented purely on GPUs, has
real-time performance and per-pixel rendering quality. With
this configuration, we achieve comparable quality to the pre-
vious triple product work [9], but two orders of magnitude
faster. There are several interesting research directionswe
want to explore:



9

Fig. 12 Bump mapping. The floor is mapped with a wave bump
map and illuminated by theGrace Cathedralenvironment map with
different orientations.

Fig. 13 TheBuddhamodel is illuminated by a set of multiple area
light sources from three different orientations and casts shadows on
the ground.

– Solution for rotating coefficients, continuous spher-
ical wavelets and other basis functions.To solve the
rotation of lighting coefficients would be the most use-
ful. We could use repeatable property of icosahedrons or
seek for some continuous spherical wavelets which have
the same rotational property as the spherical harmonics
do.

– Integration with bi-directional texture functions. A
bi-directional texture function (BTF) describes spatial
variation of different 4D transport functions; it captures
effects such as self-shadowing and self-occlusion. To the
best of our knowledge, currently there is no truly all-
frequency relighting algorithm for BTFs. We would like
to investigate the possibility to integrate the 6D BTF into
our rendering framework.

– Interactive material editing. Our framework is capable
of changing BRDF parameters on the fly. Currently, it
takes a couple of seconds to do so. With proper approxi-
mation and help of GPUs, it is possible to make material
editing more interactive.

Acknowledgements The authors would like to thank Peter Pon for
his suggestions on GPU programming. This research was done while
Wan-Chun was a visiting scholar in Graphics Lab, Institute of Cre-
ative Technologies, University of Southern California. This research
was supported by National Science Council of Taiwan under NSC 94-
2213-E-002-096.

References

1. Bonneau, G.P.: Optimal triangular Haar bases for spherical data.
In: IEEE Visualization 1999, pp. 279–284 (1999)

2. Clarberg, P., Jarosz, W., Akenine-Moller, T., Jensen, H.W.:
Wavelet importance sampling: Efficiently evaluating products of
complex functions. ACM Transactions on Graphics24(3), 1166–
1175 (2005)

3. Green, P., Kautz, J., Matusik, W., Durand, F.: View-dependent
precomputed light transport using nonlinear gaussian function ap-
proximations. In: Proceedings of I3D 2006, pp. 7–14 (2006)

4. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: Proceed-
ings of SIGGRAPH 2002, pp. 355–361 (2002)

5. Kautz, J., Sloan, P.P., Snyder, J.: Fast, arbitrary brdf shading for
low-frequency lighting using spherical harmonics. In: Proceed-
ings of EGWR 2002, pp. 291–296 (2002)

6. Lehtinen, J., Kautz, J.: Matrix radiance transfer. In: Proceedings
of I3D 2003, pp. 59–64 (2003)

7. Liu, X., Sloan, P.P., Shum, H.Y., Snyder, J.: All-frequency pre-
computed radiance transfer for glossy objects. In: Proceedings of
the EGSR 2004, pp. 337–344 (2004)

8. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows
using non-linear wavelet lighting approximation. ACM Transac-
tions on Graphics22(3), 376–381 (2003)

9. Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet in-
tegrals for all-frequency relighting. ACM Transaction on Graphics
23(3), 477–487 (2004)

10. Nielson, G.M., Jung, I.H., Sung, J.: Haar wavelets over triangular
domains with applications to multiresolution models for flow over
a sphere. In: Proceedings of the 8th conference on Visualization
1997, pp. 143–149 (1997)

11. Ramamoorthi, R., Hanrahan, P.: An efficient representation for ir-
radiance environment maps. In: Proceedings of SIGGRAPH 2001,
pp. 497–500 (2001)

12. Schröder, P., Sweldens, W.: Spherical wavelets: efficiently repre-
senting functions on the sphere. In: Proceedings of SIGGRAPH
1995, pp. 161–172 (1995)

13. Schröder, P., Sweldens, W.: Spherical wavelets: texture process-
ing. In: Proceedings of EGWR 1995, pp. 252–263 (1995)

14. Sloan, P.P.: Normal mapping for precomputed radiance transfer.
In: Proceedings of I3D 2006, pp. 23–26 (2006)

15. Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal com-
ponents for precomputed radiance transfer. ACM Transactions on
Graphics22(3), 382–391 (2003)

16. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environ-
ments. In: Proceedings of SIGGRAPH 2002, pp. 527–536 (2002)

17. Sloan, P.P., Luna, B., Snyder, J.: Local, deformable precomputed
radiance transfer. ACM Transactions on Graphics24(3), 1216–
1224 (2005)

18. Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance trans-
fer using spherical radial basis functions and clustered tensor ap-
proximation. In: Proceedings of SIGGRAPH 2006 (to appear)

19. Wang, R., Tran, J., Luebke, D.: All-frequency relighting of non-
diffuse objects using separable BRDF approximation. In: Pro-
ceedings of EGSR 2004, pp. 345–354 (2004)

20. Wang, R., Tran, J., Luebke, D.: All-frequency interactive relight-
ing of translucent objects with single and multiple scattering.
ACM Transactions on Graphics24(3), 1202–1207 (2005)

21. Wang, R., Tran, J., Luebke, D.: All-frequency relighting of glossy
objects. ACM Transactions on Graphics (to appear)

22. Wang, Z., Leung, C.S., Zhu, Y.S., Wong, T.T.: Data compression
with spherical wavelets and wavelets for the image-based relight-
ing. Computer Vision and Image Understanding96(3), 327–344
(2004)



10

Fig. 14 Rendering results of objects with complex materials under different viewing and lighting conditions. Both theXYZRGB Dragon
model and the floor are mapped with SBRDFs. In addition, the floor is bump mapped.

Wan-Chun Ma is a Ph.D. student
in Communication and Multimedia
Laboratory, Department of Com-
puter Science and Information En-
gineering at National Taiwan Uni-
versity. He received his B.S. degree
in Computer Science and Informa-
tion Engineering from National Tai-
wan University in 2000. His re-
search interests include real-time
rendering, image-based rendering
and modeling, GPU programming.

Chun-Tse Hsiaois a Ph.D. student
in Communication and Multimedia
Laboratory, Department of Com-
puter Science and Information En-
gineering at National Taiwan Uni-
versity. He received his B.S. in
Computer Science from National
Chung Cheng University in 2004.
His research interests include com-
puter vision and graphics. He is
a student member of ACM SIG-
GRAPH.

Ken-Yi Lee is a M.S. student
in Communication and Multimedia
Laboratory, Department of Com-
puter Science and Information En-
gineering at National Taiwan Uni-
versity. He received his B.S. degree
in Computer Science and Informa-
tion Engineering from National Tai-
wan University in 2005. His re-
search interests include real-time
rendering and image processing.

Yung-Yu Chuang is an Assis-
tant Professor in the Department
of Computer Science and Informa-
tion Engineering at National Tai-
wan University. He received his
B.S. and M.S. from National Tai-
wan University in 1993 and 1995
respectively, Ph.D. from University
of Washington in 2004, all in Com-
puter Science. His research inter-
ests includes real-time and realistic
rendering, digital photography and
computer vision.

Bing-Yu Chen received the B.S.
and M.S. degrees in Computer Sci-
ence and Information Engineering
from the National Taiwan Univer-
sity, Taipei, in 1995 and 1997, re-
spectively, and received the Ph.D.
degree in Information Science from
the University of Tokyo, Japan, in
2003. He is currently an assis-
tant professor in the Department of
Information Management and the
Graduate Institute of Networking
and Multimedia of the National Tai-
wan University since 2003. His re-
search interest are mainly for com-
puter graphics, geometric model-
ing, computer animation, web and

mobile graphics. He is a member of ACM, ACM SIGGRAPH, Eu-
rographics, IEEE, IEICE, and IICM.


