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Abstract

This paper proposes scene warping, a layer-based
stereoscopic image resizing method using image warping.
The proposed method decomposes the input stereoscopic
image pair into layers according to the depth and color
information. A quad mesh is placed onto each layer to
guide the image warping for resizing. The warped layers
are composited by their depth orders to synthesize the re-
sized stereoscopic image. We formulate an energy func-
tion to guide the warping for each layer so that the com-
posited image avoids distortions and holes, maintains good
stereoscopic properties and contains as many important
pixels as possible in the reduced image space. The pro-
posed method offers the advantages of less discontinuous
artifacts, less-distorted objects, correct depth ordering and
enhanced stereoscopic quality. Experiments show that our
method compares favorably with existing methods.

1. Introduction
Image resizing (image retargeting), adapting images for

displays with different sizes and aspect ratios, has received
considerable attention recently due to diversity of displays.
Traditional scaling and cropping methods easily cause sig-
nificant distortions or information loss. Content-aware im-
age retargeting methods take into account the saliency dis-
tribution of the image and attempt to keep the salient fea-
tures uncontaminated by hiding distortion within the less
noticeable areas. As another trend, recently, stereoscopic
and autostereoscopic displays have been deployed in the-
aters, televisions, computer screens, and even mobile de-
vices. Due to the diversity among resolutions and aspect
ratios of stereoscopic displays, similar to 2D images, stereo-
scopic images need to be retargeted for displaying properly
on stereoscopic displays with different specifications.

Recognizing the importance of stereoscopic image re-
targeting, several stereoscopic image resizing methods
have been proposed in the spirit of their 2D counterparts.
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Basha et al. extended seam carving to stereoscopic image
resizing [2]. Although this method produces geometrically
consistent results, as a descendant of seam carving, its dis-
crete nature may cause noticeable discontinuity on struc-
tural objects. Chang et al. extended the warping-based ap-
proaches to stereoscopic image resizing [3]. Although their
results contain less discontinuity artifacts on structural ob-
jects, the stereoscopic quality of the resized images could
be reduced because it models the whole image as a rubber
sheet and can not create proper occlusions and depth dis-
continuity, important cues for human depth perception. As
a result, depth edges could be made less prominent after
resizing, thus reducing stereoscopic quality.

Our method is inspired by scene carving for 2D image
resizing [10], which decomposes an image into layers and
applies seam carving to synthesize scene consistent retar-
geting results. It can create proper occlusions and depth
discontinuity because of its layered nature. However, since
it adopts seam carving, scene carving suffers from the same
artifacts of discontinuous structured objects. Our method
can be taken as a hybrid of scene carving and warping-based
methods [3]. Similar to scene carving, we decompose the
input stereoscopic image pair into a set of layers. Since our
input is an stereoscopic image, we can take advantage of
the disparity map to create layers more easily than scene
carving. We adopt a warping-based approach. Each layer is
warped by its own mesh deformation and the warped layers
are composited together to form the resized image. We for-
mulate an energy function to guide image warping of each
layer so that the composited resized image has the follow-
ing properties: (1) it avoids distortions and holes as much as
possible; (2) it maintains good stereoscopic properties and
(3) it contains as many important pixels as possible in the
reduced image space.

Compared to existing stereoscopic image resizing meth-
ods, the proposed method offers the following advantages.
(1) It avoids artifacts of discontinuous structured objects
commonly encountered by discrete resizing methods. (2)
It shares the same advantages with scene carving that ob-
jects are protected (i.e. not distorted) and their depth orders
are correctly maintained. (3) Thanks to its layered nature,



it better preserves the depth edges and creates proper oc-
clusions, both enhancing stereoscopic quality. (4) It applies
different deformations on different layers. Thus, it has bet-
ter chances to hide more distortions into unimportant areas
while keeping important areas uncontaminated.

2. Related work

Image retargeting. Shamir and Sorkine categorized the
content-aware image retargeting into two main classes: dis-
crete approaches and continuous approaches [16]. Seam
carving [1] is a well-known discrete method, which re-
moves a seam with the lowest importance from an image
at a time. A seam is a connected path crossing the im-
age from top to bottom or from left to right. Seam carv-
ing has been improved by many others [14, 15]. Mans-
field et al. proposed scene carving [10] to generalize seam
carving. With a user-provided relative depth map, the im-
age is decomposed into layers. Seams are removed from
the background and foreground objects are re-arranged spa-
tially. Their algorithm has the advantages that the objects
are protected (i.e. not distorted) and their depth orders are
correctly maintained. Warping-based methods, also called
continuous approaches, place a quad mesh onto the image
and deform the mesh to guide image warps for resizing the
image [17, 18]. Wolf et al. obtained warping functions by a
global optimization that squeezes or stretches homogeneous
regions to minimize the resulting distortions [17]. Wang et
al. [18] proposed to assign spatially varying scaling factors
by optimization. They also designed an energy term to pre-
serve edge orientations of the mesh for important areas.
Stereoscopic image retargeting. Basha et al. [2] extended
seam carving for stereoscopic image retargeting. Their
method simultaneously carves a pair of seams, each for a
view. By defining occluding and occluded pixels, they guar-
antee that the removed seam pairs are geometrically consis-
tent. Nevertheless, their method suffers from limitations of
seam carving and might cause obvious artifacts on struc-
tured objects, especially when the aspect ratio changes in-
tensively. Chang et al. proposed a content-aware display
adaptation method which simultaneously resizes a stereo-
scopic image to the target resolution and adapts its depth to
the comfort zone of the display while preserving the per-
ceived shapes of prominent objects [3]. Our method is sim-
ilar to theirs in the aspect that both use image warping for
stereoscopic image resizing.

3. Method

Given a stereoscopic image pair {IL, IR} whose dimen-
sions arew×h, the goal of stereoscopic image resizing is to
change their dimensions to the desired size ŵ × ĥ. We first
compute a disparity map between two views using the semi-
global stereo matching algorithm [5]. Inspired by scene

(a) left view (b) right view

(c) disparity map (d) object segmentation map
Figure 1. The disparity map and the object segmentation map.
Given an input stereoscopic image pair ((a) for the left view and
(b) for the right view), we compute its disparity map (c) and its ob-
ject segmentation map (d). Each color in (d) represents an object
layer. Notice that only maps for the left view are shown here.

carving [10], we decompose the images into multiple object
layers. Each pixel in the input image pair is assigned to one
object layer based on the computed disparity map. The cor-
responding pixels between views should be assigned to the
same object layer. Object layers can be obtained automat-
ically or semi-automatically [9] by utilizing color and dis-
parity. In our current implementation, we used a GrabCut
system [13] to segment the stereoscopic images with user
hints. Pixels are assigned to the background layer if they
are not explicitly assigned to any object layer . Through this
process, we obtain a set of object layers (including the back-
ground layer) S = {sL1 , sR1 , sL2 , sR2 , . . . , sLN , sRN}, in which
the l-th object has two corresponding object layers, sLl and
sRl , for the left and right views, respectively. We assume
that object layers in S are sorted by their average depths;
and sL1 and sR1 are the background layers. We also define
a w × h object segmentation map, Ok (k ∈ {L,R}), in
which Ok(x, y) = l, if the pixel (x, y) of Ik belongs to ob-
ject layer skl . Given a stereoscopic image pair (Figure 1(a)
and (b)), we compute the disparity map (Figure 1(c)) and
obtain the object segmentation map (Figure 1(d)).

As most continuous methods, we place a quad mesh onto
each object layer and compute a new geometry for each
mesh to deform the associated object layer. Each object
layer skl is associated with a quad mesh of fixed quad size
(20×20 in all experiments). Let Vk

l = {vk,li,j } be the vertex
set of the quad mesh for skl , where vk,li,j denotes the position
of the vertex at i-th column and j-th row of the mesh. Let
V̂k

l = {v̂k,li,j } denote the vertex set of the deformed quad
mesh. The goal of stereoscopic image resizing is to find the
optimal vertex positions v̂k,li,j for these deformed quad mesh
with respect to some energy function.



3.1. Multi-layer image compositing

Before elaborating how to obtain the optimal vertex po-
sitions, we describe the process of compositing the resized
image assuming that we have obtained the optimal vertex
positions. To render the resized stereoscopic image pair
{ÎL, ÎR} with the desired size ŵ × ĥ, each object layer skl
is first warped by the associated quad mesh V̂k

l to obtain
the warped object layer ŝkl . Next, the warped object layers
{ŝkl |1 ≤ l ≤ N} belonging to the same view k are compos-
ited together to obtain Îk according to their depth orders.
Since layers are sorted by depths, we can use Painter’s al-
gorithm to composite the final retargeted image Îk by ren-
dering in the order of ŝk1 , ŝk2 , . . ., ŝkN . Figure 2 shows the
compositing process.

3.2. Problem formulation

The goal of stereoscopic image resizing is to find a
stereoscopic image pair {ÎL, ÎR} with the desired size
which (1) has less distortions and holes; (2) maintains good
stereoscopic properties and (3) contains as many impor-
tant pixels as possible. We formulate the stereoscopic im-
age resizing problem as an optimization problem to find a
set of optimal vertex positions of deformed quad meshes,
V̂ = {V̂k

l |k ∈ {L,R}, 1 ≤ l ≤ N}, which minimize the
following objective function:

E(V̂) = EQ(V̂) + λSES(V̂) + λIEI(V̂), (1)

where EQ is the image quality energy; ES is the stereo-
scopic quality energy; and EI is the importance energy.
These energy terms correspond the above three require-
ments respectively.

To avoid folding artifacts and heavily distorted quads,
the following constraints are applied on all deformed mesh
vertex positions v̂k,li,j = (xi,j , yi,j):

xi,j < min(xi+1,j−1, xi+1,j , xi+1,j+1),

xi,j > max(xi−1,j−1, xi−1,j , xi−1,j+1),

yi,j < min(yi−1,j+1, yi,j+1, yi+1,j+1),

yi,j > max(yi−1,j−1, yi,j−1, yi+1,j−1), (2)

where i and j index columns and rows, respectively. These
are hard consrtaints and will be strictly enforced in our iter-
ative optimization procedure (Section 4).

3.3. Image quality energy

We evaluate image quality from two aspects: image dis-
tortion and image incompleteness. The first one measures
how layers (images) are distorted by the mesh deformation
and the second one counts how many pixels are left uncov-
ered (holes) in the final composited image. Thus, we define
the image quality energy EQ as

EQ(V̂) = EF (V̂) + λCEC(V̂), (3)

IL ÎL
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sL5 ŝL5
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Figure 2. The composting process. In this example, the width is
reduced by 40%. For saving space, two object layers are not dis-
played.

where EF is the image distortion energy, and EC is the im-
age incompleteness energy. The total image distortion en-
ergy is the sum of quad distortion energy terms of all layers
and all views:

EF (V̂) =∑
V̂k

l ∈V̂

∑
q̂∈V̂k

l

Wk
Q(q)(ER(q̂) + λEEE(q̂) + λOEO(q̂)),

(4)
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Figure 3. Shape deformation measurement.

where q̂ = (v̂k,li,j , v̂
k,l
i,j+1, v̂

k,l
i+1,j+1, v̂

k,l
i+1,j) represents a quad

in a warped mesh; ER is the similarity energy; EE is the
size energy; EO is the line bending energy; Wk

Q is an im-
age saliency map which can be computed from Ik using
any saliency detection algorithm and Wk

Q(q) is the average
saliency value of the quad q in the original mesh.

For the similarity energy ER, we encourage each quad to
undergo a similarity transformation [4] and use a quadratic
energy term to measure how far the deformation of a quad
is from a similarity transformation [7]. More specifically, as
shown in Figure 3, by picking any three vertices of a quad
in the counter-clockwise direction, taking v0,v1, and v2 as
an example, we can define v0 by v1 and v2 as

v0 = v1 +R90
−→
v1v2,R90 =

[
0 1
−1 0

]
(5)

After deformation, given vertex positions v̂1 and v̂2, we can
obtain the expected position of v0 after deformation as

ṽ0 = v̂1 +R90

−→
v̂1v̂2 . (6)

Ideally, if the quad undergoes a similarity transformation,
the expected position ṽ0 should be identical to v̂0, the posi-
tion of v0 after deformation. Thus, ER(q̂) can be calculated
by summing (ṽ0 − v̂0)

2 for all combinations of three ver-
tices in a quad q.

Inspired by Wang et al. [18] and Niu et al. [12], it is also
important to maintain the sizes and orientations of salient
regions. To maintain the original quad size, the energy term
EE is added to measure the edge length differences. An-
other energy term EO is added to maintain the orientation
by measuring the degree of line bending.

EE(q̂) = (xi+1,j−xi,j−S)2 + (yi,j+1−yi,j−S)2 (7)

+ (xi+1,j+1−xi,j+1−S)2 + (yi+1,j+1−yi+1,j−S)2,
EO(q̂) = (xi,j+1−xi,j)2 + (yi+1,j−yi,j)2 (8)

+ (xi+1,j+1−xi+1,j)
2 + (yi+1,j+1−yi,j+1)

2,

where (xi,j , yi,j) is the position of the vertex v̂k,li,j , and S is
the width of the original quad.

The image incompleteness term EC measures the in-
completeness of the final resized stereoscopic image. There
could exist holes in the final composited image if some pix-
els are not covered by any resized object layer. We would

like to reduce holes (uncovered pixels) as much as possible
for better visual quality. Thus, the image incompleteness
term EC is defined as the number of uncovered pixels in
the resized images, {ÎL, ÎR}. To count the number of un-
cover pixels, we obtain the resized object segmentation map
by the following steps. First, for each object layer, skl , we
define a w × h mask Mk

l , where

Mk
l (x, y) =

{
l if Ok(x, y) = l,
0 otherwise. (9)

Then we warp eachMk
l by V̂ k

l , and denote the warped mask
as M̂k

l . With our multi-layer image compositing method
(Section 3.1), we can composite all these warped masks
{M̂k

l |1 ≤ l ≤ N} to form a resized object segmentation
map Ôk of size ŵ × ĥ. Figure 2 shows an example for
the resized object segmentation map, ÔL. With Ôk, EC is
defined as:

EC(V̂) = Z(ÔL) + Z(ÔR), (10)

where the operator Z(·) counts the number of zero-pixels in
the input image.

3.4. Stereoscopic quality energy

In order to maintain good stereoscopic properties, we use
two criteria. The first is to maintain the original disparity
values as much as possible, and the second is to ensure that
there is no vertical offset between the corresponding points
across views. From the disparity map, we can obtain a set of
corresponding points F = {(pLi , pRi )}, in which pLi and pRi
are a pair of corresponding points between the left and right
views. After the mesh deformation defined by V̂, we have
a set of warped corresponding points F̂ = {(p̂Li , p̂Ri )}. To
preserve good stereoscopic quality, we require (1) the dis-
parity value between warped corresponding points p̂Li and
p̂Ri should be the same as the original disparity between pLi
and pRi and (2) their vertical offset should be zero:

ES(V̂)=
∑

(p̂L
i ,p̂R

i )∈F̂

WS(p
L
i )(ED(p̂Li , p̂

R
i )+λV EV (p̂

L
i , p̂

R
i )),

(11)

where ED measures disparity consistency and EV ensures
zero vertical drift:

ED(p̂Li , p̂
R
i ) = ((p̂Ri [x]− p̂Li [x])− (pRi [x]− pLi [x]))2

(12)

EV (p̂
L
i , p̂

R
i ) = (p̂Ri [y]− p̂Li [y])2, (13)

where the operator [x] extracts the x-component of the in-
put 2-D vector; [y] extracts the y-coordinate; and WS is
a stereoscopic saliency map to encourage more salient re-
gions to have better stereoscopic quality. We will discuss
the stereoscopic saliency map in Section 4.



3.5. Importance energy

With only the image quality term and the stereoscopic
quality term, the optimal solution would be cropping as
cropping perfectly preserves stereoscopic constrains and in-
troduces neither distortions nor holes. Cropping however is
not a preferred solution as it could remove important con-
tent. In addition to cropping, layer occlusions could also
introduce important content loss as some pixels could be-
come occluded and not shown in the resized image. We
would like to reduce content loss as much as possible. For
example, content loss due to layer occlusions could be re-
duced if the layers are repositioned so that they occlude less
important areas instead of important ones. We add the im-
portance energy term to ensure that the resized image keeps
as much important content as possible.

We assume that each object layer has an importance map,
Wk,l

I . There are many ways for obtaining such importance
maps. For example, objects in the front are often more im-
portant than the ones in the back. Thus, we could use a
layer’s depth order as its importance. It can also be pro-
vided by the users or set as the same as the image’s saliency
map Wk

Q. To measure importance loss, EI , we first obtain
the visibility map [11], which describes whether a pixel in
the original image is visible in the resized image. A pixel
becomes invisible usually due to occlusions. The impor-
tance loss EI can then be determined by summing the im-
portance values of all unseen pixels. To determine whether
a pixel (x, y) of Ik is visible in the resized image, the pixel
is warped from (x, y) to (x̂, ŷ) by V̂k

Ok(x,y)
, and its visibil-

ity can be determined as:

Ak(x, y) =


1, if 1 ≤ x̂ ≤ m̂, 1 ≤ ŷ ≤ n̂

and Ôk(x̂, ŷ) = Ok(x, y),
0, otherwise.

(14)

With the visibility map Ak, EI is defined as:

EI(V̂)=
∑

k∈{L,R}

∑
(x,y)∈Ik

(1−Ak(x, y))×Wk
I (x, y) (15)

4. Implementation details
Iterative optimization. The major challenge for opti-
mizing E(V̂) is the calculation of the terms EI and EC .
They cannot be parameterized and can only be evaluated by
counting pixels or summing importance values in the com-
posited images. Thus, for optimization, we adopt a coarse-
to-fine strategy and iteratively update one mesh vertex po-
sition at a time by searching for the local minimum within
a small neighborhood of the current solution.

To find V̂ which minimizes E, the input images are first
scaled down to the coarsest level. We use five levels with a
scaling factor of 2 for all results. At the coarsest level, we
take uniform scaling as the initial guess. After obtaining the

optimal solution at a coarser level, the resultant V̂ is scaled
up into the next finer level and used as the initial guess for
that level. At each level, we first fix V̂R and update V̂L.
Then, we fix V̂L and update V̂R. We alternatively update
between views for T1 iterations. When updating V̂k, all N
object layers, V̂k

l ∈ V̂k, are optimized one by one by fixing
all other layers. This process is repeated for T2 iterations.
In the current implementation, both T1 and T2 are 4.

To find the optimal V̂k
l when fixing all other object lay-

ers, we iterate through every vertex v̂k,li,j ∈ V̂k
l , and eval-

uate E in a small neighborhood around the current solu-
tion v̂k,li,j using a local search. More specifically, we take
a uniform grid of samples around the small neighborhood
of the current solution and search for the minimum of
E at these samples. The grid of samples can be written
as v̂k,li,j + (δx, δy) where v̂k,li,j is the current solution and
(δx, δy) ∈ {(txP, tyP )|tx, ty ∈ Z and −K ≤ tx, ty ≤ K}
That is, we take (2K+1)×(2K+1) samples with the sam-
pling interval P in each dimension. In our implementation,
we usedK = 6 and P = 0.25. We evaluate E at these sam-
ples and update v̂k,li,j as v̂k,li,j + (δx, δy) with the minimum
energy among these samples. Although we have to evaluate
E at each sample, fortunately, only one vertex is updated at
a time and the updates of EI and EC are local. They can be
implemented efficiently using incremental calculation.
Importance maps. There are three types weighting maps
in the energy, each accounting for image quality importance
(WQ), stereo quality importance (WS), and content impor-
tance (WI ). A reasonable choice for WQ and WS is the
image’s saliency map. WI can be supplied by the users or
by the saliency map. In practice, we found that foreground
objects usually have higher importance. Thus, the object
segmentation map or the estimated disparity map are also
reasonable choices for WI . This observation is the same as
the stereoscopic saliency map used by Lang et al. [8]. In
the current implementation, we use the same map for Wk

I ,
Wk

Q, and Wk
S . The map is defined as

Wk(x, y) =

{
1, Ok(x, y) > 1
0.01, otherwise. (16)

5. Results
We used the following datasets to test the propose

method: Aloe from the Middlebury stereo dataset [6], Peo-
ple, Snowman, and Man from Flicker1. Two methods were
compared: a seam carving based approach (ICCV’11) [2]
and a warping based approach (TMM) [3]. For all results
in the paper, our method took around five minutes. The
process can potentially be sped up using parallel processing
with GPUs or multithreading.

There are a few adjustable parameters in our method,
such as λS , λI , λC , and λV . In all results, λC is set to

1Downloaded from the website http://www.eng.tau.ac.il/ talib/Data SC.html



Original TMM ICCV’11 Ours

Figure 4. Man Dataset. Reducing width by 17%. (From top to bottom: left view, right view, estimated disparity map)

Original TMM ICCV’11 Ours

Figure 5. People Dataset. Reducing width by 17%. (From top to bottom: left view, right view, estimated disparity map)

a large value of 104 because image incompleteness is not
preferred in most cases. λV controls the degree of vertical
offsets between different views, which is crucial for stereo-
scopic vision, and is also set to a large value of 103. As for
λS and λI , we leave them as control options. We start with
small values and intuitively adjust them depending on what
we prefer: a larger λS for better stereoscopic quality, and a
larger λI for preserving important content better.

A good retargeted stereoscopic result has less distortions
and information loss in the left and right views, while pre-
serving original disparity values and depth discontinuities
(sharp edges in the disparity map). Based on these criteria,
we can compare our method with other approaches. Fig-
ure 4 compares our method with ICCV’11 and TMM on
Man. Note that the white lines in our results remain straight
while they become jiggle in ICCV’11. It is the common ar-



Original ICCV’11 Ours

Figure 6. Aloe Dataset. Reducing width by 20%. (From top to
bottom: left view, right view, estimated disparity map)

tifacts inherited from discrete methods. TMM distorts the
shape of the man, making the head smaller and the lower
body fatter. It is because that the warping-based approach
uses a single mesh for the whole image. The warping has
to make a trade-off between the requirements of the fore-
ground and the background. Our result preserves the shape
of man and the lines in the background. Note that, as scene
carving, our method could change the relative positions of
objects and rearrange objects’ spatial relationships. Never-
theless, it still yields a geometrically consistent interpreta-
tion of the scene as shown in the disparity map estimated
from the resultant left and right images. In Figure 5, again,
TMM distorts the shapes of people. ICCV’11 has similar
discontinuity artifacts. For example, the boat after the car
becomes broken in ICCV’11 results.

Figure 6 compares our method to ICCV’11 on Aloe. The
discreet nature of ICCV’11 creates very strange shape for
the foreground plant and pot. Our method preserves the
shapes much better. Figure 7 and Figure 8 compare our
method with TMM on Snowman with two different size
changes. For moderate size change (17% in Figure 7),
TMM can produce reasonable results. However, for more
intensive size change (40% in Figure 8), TMM introduces
shape distortion. In addition, for this case, the disparity
range of TMM result is highly compressed and the stereo-
scopic quality is greatly reduced.

As defined by Basha et al. [2], for maintaining geometric
consistency, the resized image should have a similar dispar-
ity map to the original disparity map. The sharp edges in the
disparity map are especially important for good stereo ex-

Original TMM Ours

Figure 7. Snowman Dataset. Reducing width by 17%. (From top
to bottom: left view, right view, estimated disparity map)

Original TMM Ours

Figure 8. Snowman Dataset. Reducing width by 40%. (From top
to bottom: left view, right view, estimated disparity map)

periences. In general, our method has a better disparity map
than TMM in terms of geometric consistency. Compared to
ICCV’11, our results have less structure discontinuity in ap-
pearance. When viewing in 3D with stereoscopic displays,
TMM has “rubber sheet” artifacts in depth and worse 3D
perception since it does not handle occlusions well. On the
other hand, The structure discontinuity artifacts of ICCV’11
often look annoying in appearance when viewing in 3D.
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Figure 9. Visual contributions of EQ, EI and ES . (From top to
bottom: left view, right view, estimated disparity map)

There are three major terms, EQ, ES and EI , in our for-
mulation (Equation 1). If EQ is removed, the image could
be distorted and have holes for preserving more important
content (EI ) and maintaining better stereo correspondences
(ES). If ES is removed, the stereo correspondences might
not be maintained well. The perceived depths could be dis-
torted, or even worse the viewer cannot fuse images to have
3D perception. If EI is removed, the method tends to crop
the images to the target size as it perfectly preserves im-
age and stereo qualities. This, however, might remove im-
portant contents. Figure 9 evaluates visual contributions of
these terms. The results show that the content will be more
distorted if EQ is removed; the content will be cropped if
EI is removed; and the estimated disparity map could devi-
ate much from the original disparity map if ES is removed.

6. Conclusions
This paper proposes scene warping, a layer-based stereo-

scopic image resizing method using image warping. The
input stereoscopic image is decomposed into layers. Each
layer is warped by its own mesh deformation and the
warped layers are composited together to form the resized
images. The energy function of scene warping enforces the
resized image with less distortions and holes, good stereo-
scopic properties and important content. Compared to ex-
isting methods, scene warping offers the advantages of less
discontinuous artifacts, less-distorted objects, correct depth
ordering and enhanced stereoscopic quality. Our method
suffers from the common limitations shared by warping-

based methods. When parts of the input image are crowded
with important objects, our method could crop or occlude
important objects. In the future, we would like to explore
methods to relax this restriction.
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