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Abstract

In this paper, we present a new method for surface extraction from volume data which preserves sharp features,
maintains consistent topology and generates surface adaptively without crack patching. Our approach is based
on the marching cubes algorithm, a popular method to convert volumetric data to polygonal meshes. The original
marching cubes algorithm suffers from problems of topological inconsistency, cracks in adaptive resolution and
inability to preserve sharp features. Most of marching cubes variants only focus on one or some of these problems.
Although these techniques could be combined to solve these problems altogether, such a combination might not
be straightforward. Moreover, some feature-preserving variants introduce an additional problem, inter-cell depen-
dency. Our method provides a relatively simple and easy-to-implement solution to all these problems by converting
3D marching cubes into 2D cubical marching squares, resolving topology ambiguity with sharp features and elim-
inating inter-cell dependency by sampling face sharp features. We compare our algorithm with other marching
cubes variants and demonstrate its effectiveness on various applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computation Geometry
and Object Modeling: Curve, surface, solid and object representations

1. Introduction

Volumetric and polygonal representations are arguably the
two most popular representations for geometric objects in
computer graphics. Polygonal representation allows efficient
rendering on modern graphics hardware, but it is not an
effective representation for time-varying applications and
for performing geometric manipulations, such as Construc-
tive Solid Geometry (CSG) modeling or boolean opera-
tions [BKZ01]. On the contrary, such geometric operations
would be easier with volumetric representation, although
rendering volumetric data is less efficient than polygonal
meshes on modern graphics architecture.

To display the volumetric data efficiently, the well-known
marching cubes algorithm [LC87] and its variants provide a
convenient and efficient way to convert the volumetric data
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into polygonal meshes. These methods allow us to accu-
rately represent geometric objects as volumetric data, ma-
nipulate them volumetrically, and efficiently display them
by converting on the fly the volumetric data into polygonal
meshes. However, although the original marching cubes al-
gorithm is generally effective, it has problems with topologi-
cal inconsistency, cracks in adaptive resolution and inability
to preserve sharp features.

The first problem with the original marching cubes algo-
rithm is topological inconsistency because of topology ambi-
guities. Such ambiguities arise when there are more than one
feasible assignments for a case in the lookup table of march-
ing cubes. In these cases, the triangulation has to choose
which pairs of intersections to connect or to decide whether
two components are separated or joined. An inconsistent am-
biguity resolution strategy could lead to holes.

The second problem is cracks in adaptive resolution.
Adaptive methods apply marching cubes to an adaptive grid
to reduce the number of resulting triangles. However, they
can result in cracks at the interfaces of grid cells at dif-
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ferent resolutions. Such a problem is often overcome by
crack patching. While crack patching is effective, it of-
ten stretches the high-resolution edges to match with low-
resolution edges and hence does not take full advantage of
the finer-resolution data.

The third problem is the inability to preserve sharp fea-
tures. The original marching cubes algorithm assumes that
the underlying surface is smooth and does not preserve sharp
edges and corners. Hence, a flat surface might become wavy.
The main idea for solving this problem is to find the exact
intersection of the zero-crossing points’ tangent planes. To
define the tangent planes, in addition to a scalar field, sharp-
feature-preserving algorithms require exact information of
normals for zero-crossing points.

Finally, while sharp-feature-preserving algorithms im-
prove the accuracy of extracted surface, some of them, un-
fortunately, introduce another problem of inter-cell depen-
dency, i.e., the extracted surface of a cell might depend on
the results of its neighboring cells. The inter-cell dependency
makes the computation slower and more complex. Hence,
eliminating inter-cell dependency improves the performance
and makes it easier to implement surface extraction algo-
rithms on programmable graphics processing units (GPUs),
which have more computing power than CPUs.

To sum up, current marching-cube-style techniques could
still suffer from some problems of topological inconsistency,
cracks in adaptive resolution, sharp feature preservation and
inter-cell dependency. Such problems limit the speed and ac-
curacy of applications using these techniques. These prob-
lems are often discussed and solved individually in previous
literature. Although previous techniques could be combined
to solve these problems altogether, such a combination might
be complicated or even impossible. In this paper, we pro-
pose a new solution that converts the marching cubes into
cubical marching squares, determines topology with sharp
features and eliminates inter-cell dependency. We call this
method cubical marching squares (CMS) method. By reduc-
ing three-dimensional problems into two-dimensional ones,
our method effectively overcomes all the above problems in
a simple and intuitive manner.

2. Related Work

Marching cubes (MC) algorithm was proposed by Lorensen
and Cline in 1987 [LC87]. It analyzes the binary pattern of
eight vertices of a cube to construct a surface that approx-
imates the underlying surface. Considering rotations and
symmetries, they reduce the original 256 patterns to a total
of 15 configurations. As described previously, although the
marching cubes algorithm has been proved effective, it has
several problems and many variants were hence proposed to
address these problems.

First of all, there have been two types of ambiguities
found in certain configurations where there are more than

one ways to triangulate. The first is face ambiguity. It arises
when a face has two diagonally opposite vertices marked
positive and the other two marked negative. Nielson and
Hamann [NH91] show how this can happen between neigh-
boring cells and may lead to holes and inconsistent topology.
Another is internal ambiguity which occurs in the interior
of a cell. Natarajan [Nat94] and Chernyaev [Che95] inde-
pendently identify this type of problem and provide solu-
tions. These ambiguities can often be resolved by adding ex-
act sample points inside each cell. To determine these extra
points, many methods assume that “the implicit function of
the volumetric data is linear along an edge; bilinear on a face;
and trilinear inside a cell.” Under this trilinear assumption,
several methods are proposed to resolve ambiguous cases
on the faces [NH91] and inside the cells [LB03, Nie03],
and thus to determine a consistent topology. More recently,
Lewiner et al. [LLVT03] provide an efficient and complete
implementation of Chernyaev’s method. We call these al-
gorithms topology-consistent marching cubes (TMC) in this
paper.

When applying the marching cubes algorithm to a uni-
form grid, the number of resulting triangles could be large
even if the original surface is quite simple. To reduce the
number of triangles, several methods have been developed
to apply marching cubes algorithm to an adaptive grid,
such as an octree [WG92, SCK95]. Crack patching is per-
formed to fill cracks where two cells of different resolu-
tions meet [SFYC96]. Heidrich et al. also propose a real-
time adaptive isosurfacing method [HSE99].

The original marching cubes algorithm does not represent
sharp features well. By using extra information of normals,
Kobbelt et al. [KBSS01] propose the extended marching
cubes (EMC) algorithm which preserves sharp features. The
EMC method has basically two operations. One is detect-
ing and sampling the sharp features; the other is edge flip-
ping. The main idea is to find the exact intersection points by
intersecting the tangent planes of the zero-crossing points.
Ju et al. propose dual contouring (DC) [JLSW02], a hybrid
method of EMC [KBSS01] and SurfaceNets [Gib98] algo-
rithms. They use EMC to sample sharp features and Sur-
faceNets to connect the features to form the surfaces. Their
method preserves sharp features and prevents holes and
cracks in adaptive resolution. However, these methods do not
resolve ambiguous cases and may have holes due to topolog-
ical errors. Furthermore, these methods introduce additional
problem of inter-cell dependency because of the edge flip-
ping operation. It makes the computation more complex and
slower.

Some recent work attempts to extend the previous algo-
rithms to solve these problems more completely. For ex-
ample, several papers attempt to enhance the dual con-
touring to overcome the problem of inconsistent topology.
Zhang et al. [ZHK04] propose an enhanced dual contour-
ing method which allows more than one feature points in-
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MC TMC EMC DC CMS
adaptive refinement

√ √

topological consistency
√ √

sharp-feature preservation
√ √ √

inter-cell independence
√ √ √

Table 1: The comparison of the five related methods, orig-
inal marching cubes (MC), topology-consistent marching
cubes (TMC), extended marching cubes (EMC), dual con-
touring (DC) and our method (CMS). Note that previous
methods could be combined, but sometimes, such a combina-
tion might not be straightforward. Hence, we make this table
by only considering the original version of each method.

side a cell to preserve the topology of the cell. Schaefer
and Warren [SW04] provide a primal contouring method
of dual grids to represent thin features without excessive
subdivision. Varadhan et al. [VKKM03] propose a method
which allows multiple intersections along an edge to re-
construct thin features without creating unwanted handles.
Varadhan et al. [VKSM04] propose a method to adaptively
subdivide cells until the piece of surface inside a cell is topo-
logically equivalent to a disk. However, they use the origi-
nal marching cubes algorithm and do not preserve sharp fea-
tures.

Another related work is the method proposed by
Rodehorst and Kimia [RK02]. They apply a higher-
order-polynomial interpolation, called ENO interpola-
tion [SKS97], to several consecutive sample points to sample
possibly more than one zero-crossing points, called ENO an-
chor points, on an edge of a cell. They prove that there are
at most two anchor points on an edge and allow an edge
have two zero-crossing points. The surface is reconstructed
by triangulating these anchor points. Triangulation is per-
formed step by step, adding one triangle at a time, until all
anchor points are triangulated. When there is an ambiguity,
i.e., multiple possible triangles to choose, they use the nor-
mals of triangles created in neighboring cells to choose the
one which results in the smoothest surface. Although this ap-
proach guarantees consistent topology, it has the following
drawbacks: (1) it is highly inter-cell dependent; actually, the
generation of each triangle depends on the previously gener-
ated triangle; (2) it does not consider 3D sharp features and
internal ambiguity; and (3) because an edge could have at
most two zero-crossing points, the rule becomes more com-
plicated.

Table 1 compares our CMS algorithm with other
four methods: original marching cubes, topology-consistent
marching cubes, dual contouring and extended marching
cubes. Note that these methods could be combined, but
sometimes, such a combination might not be straightfor-
ward. Furthermore, inter-cell independency is often ignored
by sharp-feature-preserving methods based on EMC.

(a) (b) (c)

(d) (e) (f)

Figure 1: Cubical marching squares. A marching cube (a,
d) can be unfolded into six marching squares (b, e). Each
square is processed independently. The generated segments
on these faces are put back to 3D to form components (a, d).
By doing so, we can achieve the goal of being adaptive with-
out performing crack patching. In addition, face ambiguities
can be resolved in 2D by resolving the ambiguous faces (the
middle faces in (b, e)). Finally, the resulting components are
triangulated to generate the isosurface (c, f).

3. Cubical Marching Squares

This section describes our algorithm for extracting a trian-
gle mesh from a given geometric representation. It first de-
scribes the input to the algorithm (Section 3.1). Then, it
explains the main ideas behind the algorithm and gives an
overview of the algorithm (Section 3.2). The following two
sections describe in more details the two main steps of our
algorithm: segment generation (Section 3.3) and surface ex-
traction (Section 3.4).

3.1. Input

The input of our algorithm is a geometric representation for
volume data such as a polygonal mesh, an implicit surface,
a set of point clouds, or a scalar distance field. The first
step is to convert different types of geometric representa-
tions into a uniform format. We choose the same format as
the dual contouring algorithm [JLSW02], a signed grid with
edges tagged with exact intersection points (sample points)
and their normals (sample normals). This kind of data was
called Hermite data by Ju et al. [JLSW02]. As pointed out
by Kobbelt et al. [KBSS01], for most geometric represen-
tations, Hermite data can be computed directly or derived
implicitly. Since our goal is to represent the volume data
as precisely as possible, the Hermite data is acquired at a
very fine resolution, say, a uniform nk × nk × nk grid. Our
algorithm then generates a polygonal approximation for the
Hermite data without referring to the original geometric rep-
resentation.
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3.2. Algorithm overview

Given the Hermite data in the previous section, we attempt
to adaptively reconstruct a polygonal mesh which approxi-
mates the original volume data as precisely as possible. Our
algorithm is built on the following ideas: (1) marching cubes
can be unfolded as marching squares; (2) inter-cell depen-
dency can be eliminated by adding sharp features on faces;
and (3) sample normals can be used not only to sample sharp
features but also to solve ambiguities and to maintain con-
sistent topology.

As shown in Figure 1, a cube can be unfolded into six
faces. For each face, we generate the isocurve using the
marching squares algorithm. The resulting isocurve for each
face consists of several segments. If we fold these faces back
to form the original cube and connect together these seg-
ments properly, we obtain exactly the same components as
marching cubes algorithm does. Finally, these components
are triangulated to generate the isosurface. The triangulation
can be chosen arbitrarily as long as it is consistent. Hence, a
marching cube table lookup can be converted to six march-
ing square table lookups and a component tracing operation.
Hence, we call this method cubical marching squares. It is
equivalent to marching cubes but generally slightly slower.
However, as discussed later, it allows us to generate polygo-
nal meshes adaptively in a simple and consistent way with-
out performing crack patching. Furthermore, it allows us to
sample sharp features on faces to eliminate inter-cell depen-
dency.

Many sharp-feature-preserving algorithms use sample
normals to detect and sample the sharp features for a com-
ponent of the isosurface inside a cell. These methods often
suffer in the resulting surface from the problem of topology
error. On the other hand, previous methods for solving am-
biguities and maintaining topology use the trilinear assump-
tion and do not take sharp features into account. In contrast,
we find that the detection of sharp features can be used to
solve ambiguities as well. Hence, we use the same proce-
dure to achieve the goals of preserving sharp features and
maintaining consistent topology.

Our algorithm has three stages: constructing an adaptive
signed octree, generating segments for each leaf face, and,
finally, extracting surfaces for each cell in the signed oc-
tree. The pseudo code in Algorithm 1 describes our algo-
rithm more precisely. We start from a very coarse uniform
n0 × n0 × n0 base grid B, in our implementation, n0 = 8.
For each cell c in B, the procedure SUBDIVIDECELL checks
whether this cell needs to be further subdivided. A cell is
subdivided if one of the following conditions holds:

• It has an edge ambiguity. When there are more than one
sample points on an edge of the cell as shown in Fig-
ure 2(a), the cell should be subdivided (Figure 2(c)). Oth-
erwise, the surface will be generated incorrectly (Fig-
ure 2(b)).

Algorithm 1 Cubical Marching Squares. Given Hermite
data, this procedure generates the corresponding triangle
mesh.

1: procedure CUBICALMARCHINGSQUARES(HermiteData H)
2: InitializeBaseGrid(B); . initialize a coarse base grid B
3: for each cell c in B
4: SUBDIVIDECELL(H, c);
5: end for
6: for each leaf face f
7: GENERATESEGMENT( f );
8: end for
9: for each leaf cell c

10: EXTRACTSURFACE(c);
11: end for
12: end procedure

(a) (b) (c)

Figure 2: Edge ambiguity. In (a), the red edge has two sam-
ple points and there is an edge ambiguity. If the cell is not
further subdivided, such an ambiguity can lead to a wrong
surface (b). We resolve this ambiguity by subdivision (c).

• It has the tendency to contain a complicated surface. We
detect this by a heuristic, checking whether the maximal
spanning angle of all pairs of sample normals inside this
cell exceeds a predefined angle threshold. When this hap-
pens, it means that the surface inside a cell might not be
flat enough and should be subdivided.

When subdividing a cell, we subdivide its faces first. Each
face is subdivided into four subfaces and the relationships
between subcells and subfaces are recorded. We stop the
subdivision if it exceeds the maximal level of subdivision, k.
Hence, the finest resolution is nk = 2kn0. The result of this
subdivision step is an adaptive signed octree. A cell in the
octree is called a leaf cell if it does not have subcells. A face
is called a leaf face if it does not have subfaces. Note that
a leaf cell could have a complicated non-leaf face if any of
its neighbors is at a deeper level and subdivides their shared
face. The face shared by two cells subdivided at two differ-
ent levels is called a transition face. Cracks could happen if
the transition faces are not handled properly.

3.3. Segment generation for faces in 2D

Once we have built the adaptive signed octree, the next step
is to use the procedure GENERATESEGMENT in Algorithm 2
to extract the segments for all leaf faces. For the face f be-
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Case 0 Case 1 Case 2 Case 3.1 Case 3.2

Figure 3: Lookup table for marching squares. Case 3 has
a face ambiguity, so there are two possible assignments of
pairs to connect, cases 3.1 and 3.2.

ing processed, by checking the sign patterns of f ’s vertices
with the lookup table for marching square (Figure 3), we can
determine how many segments f has. Case 0 gives no seg-
ments; Cases 1 and 2 give one segment; and Case 3 gives
two segments, here there is a face ambiguity. In such an am-
biguity, we do not know which pairs of sample points should
be connected to form segments. With the help of sample nor-
mals, we resolve this ambiguity by checking the sharp fea-
tures.

Algorithm 2 GenerateSegment. This procedure finds all
segments for a face f , resolves face ambiguity if any, and
samples sharp features if necessary.

1: procedure GENERATESEGMENT(Face f )
2: if there are two segments then . Case 3 in Figure 3
3: {l1, l2}←RESOLVEFACEAMBIGUITY( f );
4: f .list←{l1, l2};
5: DETECTFACESHARPFEATURE( f .list);
6: else if there is one segment l then
7: f .list←{l};
8: DETECTFACESHARPFEATURE( f .list);
9: end if

10: end procedure

A 2D sharp feature can be detected by finding the inter-
section point of the two tangent lines defined by the sample
points and their normals. We resolve the face ambiguity by
detecting whether sharp features overlap. As shown in Fig-
ure 4, one of two possible segment assignments (Figure 4(a))
has overlapped sharp features. This is not a valid assignment
because the input Hermite data describes a volume and a
volume should not intersect itself. Hence, we choose the as-
signment without feature overlaps (Figure 4(b)) and resolve
the face ambiguity. Although the results are possibly dif-
ferent from the results obtained using asymptotic deciders,
we found it effective to decide the face ambiguity by testing
sharp feature overlap.

Finally, for each segment, we detect if there is a face sharp
feature on the segment by testing whether the angle between
two normals are large enough. If there is a sharp feature, we
tag the segment and store the position. This face sharp fea-
ture is used to remove the inter-cell dependency. As stated in
Section 2, EMC algorithm [KBSS01] has inter-cell depen-
dency because of the edge flipping operation. For the sharp

(a) (b)

Figure 4: Face ambiguity. Face ambiguity is resolved by
testing whether sharp features overlap. Since the input data
describes a volume, it should not intersect with itself. Hence,
the segment assignment with feature overlapping (a) is not
valid. We choose the assignment (b) to form two segments
and resolve the ambiguity.

(a) (b)

Figure 6: Cubical marching squares. For the cell in (b), the
resulting faces could describe a complicated piecewise lin-
ear curves (a). The yellow and magenta line loops in (b) are
components.

features in Figure 5(a), to correct the connectivity, EMC
flips an edge to connect two sharp features as shown in Fig-
ure 5(b). However, after the flip, not all resulted triangles are
located inside cells. This is called inter-cell dependency. DC
method [JLSW02] has a similar drawback. Hence, these al-
gorithms require a extra computation on adjacent cells to re-
store the correct connectivity. Such a dependency also makes
it more difficult to extend EMC to be adaptive. To remove
this dependency, we sample a face sharp feature on the in-
terfacing face (Figure 5(d)) between two adjacent cells. This
extra face feature removes the need for edge flipping and the
inter-cell dependency as shown in Figure 5(c).

After this stage, for each leaf face, we find all segments
of this face. For a non-leaf face, its segments are the union
of the segments of its subfaces. A leaf face could have at
most four line segments if it has two sharp features. How-
ever, a non-leaf face could have a set of segments represent-
ing very complicated piecewise linear curves. For example,
Figure 6(a) shows the resulting segments on each face for the
cell in (b). The next section explains how to construct com-
ponents (the yellow and magenta line loops in Figure 6(b))
in a cell using the segments of its six faces.

c© The Eurographics Association and Blackwell Publishing 2005.
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(a) (b) (c) (d)

Figure 5: Inter-cell dependency. EMC flips an edge in (a) to restore the edge features as shown in (b). It, however, introduces
inter-cell dependency. CMS samples a face sharp feature as shown in (d) to eliminate inter-cell dependency (c).

3.4. Surface extraction for cells in 3D

We use the procedure EXTRACTSURFACE in Algorithm 3 to
connect segments to form components and to generate tri-
angles. For each leaf cell, we first collect all segments be-
longing to this cell, that is, the union of the segments of
its six faces. The procedure GETSEGMENT returns all seg-
ments belonging to a face. After collecting all segments on
the faces of the cell c, we trace all the components by group-
ing together the segments which form a circle. This can be
easily done by starting from an edge and sequentially find-
ing the next edge which shares an end point with the current
edge. Each circle represents a component o.

Algorithm 3 ExtractSurface. This procedure uses the seg-
ments found by GENERATESEGMENT to construct 3D com-
ponents inside a cell, resolves internal ambiguity if neces-
sary and generates triangles as the output.

1: procedure EXTRACTSURFACE(Cell c)
2: l←∅; . list of all segments belonging to the cell c
3: for each face fi of the cell c . i← 1 to 6
4: l← l∪ GETSEGMENT( fi);
5: end for

. connecting segments whose end points coincide
6: O← TRACECOMPONENTS(l);

7: for each component o in O
8: DETECTSHARPFEATURE(o);
9: end for

10: if HasInternalAmbiguity(O) then
11: RESOLVEINTERNALAMBIGUITY(O);
12: else
13: for each component o
14: TRIANGULATION(o);
15: end for
16: end if
17: end procedure

By definition, a crack happens where there exists an edge
owned only by a single component. This can only happen on
the transition faces. In our algorithm, all edges on the tran-
sition faces are generated from segments and every segment

is exactly shared by two components from two neighboring
cells. Hence, the resulting mesh is guaranteed crack free.

To preserve 3D sharp features, we then sample sharp fea-
tures for each resulting components. Sharp features are sam-
pled as suggested by Kobbelt et al. [KBSS01], that is, solv-
ing [. . .ni . . .]

T p = [. . .nisi . . .] by singular value decomposi-
tion, where s is the location of a sample point, n is a sample
normal, and p is the location of the sharp feature.

If there is a sharp feature p in a component consisting
of the vertices v1, · · · ,vn (including vertices of the segments
in this component and face sharp features tagged on these
segments), we use p as the center to create a triangle fan
with triangles, pv1v2, pv2v3, · · · , pvn−1vn, pvnv1. If there is
no component sharp feature, we calculate the average point
of all sample points on this component and use it as the cen-
ter to generate the triangle fan.

3D sharp features are also used to detect and resolve in-
ternal ambiguity. Internal ambiguity occurs where we can
not determine whether two components are joined or sepa-
rated by only looking at the signs on the vertices of a grid.
Similar to the resolution of face ambiguity, we resolve inter-
nal ambiguity by checking whether 3D sharp features of two
components overlap. For each component, a cone-like vol-
ume is formed centered at its sharp feature. If the volumes
of two components overlap, these components are classified
as joined. Otherwise, they are separated. If two components
are separated, we generate the triangle fan for each com-
ponent respectively using the method in the previous para-
graph. If two components are joined, the resulting surface
is topologically equivalent to a cylinder. We use a dynamic
programming algorithm to connect and triangulate these two
components to form the surface.

4. Results

The CMS algorithm is provided as an open source library†.
We first use a tetrahedron to compare the performance of
marching cubes, extended marching cubes, dual contouring

† http://graphics.csie.ntu.edu.tw/CMS/
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(a) ground truth (b) MC (c) EMC (d) DC (e) CMS

Figure 7: Comparisons for the original marching cubes (b), extended marching cubes (c), dual contouring (d) and cubical
marching squares (e). The input model is a tetrahedron (a). It is converted into a uniform grid of Hermite data and these
algorithms are used to extract surfaces. The top row shows the extracted surfaces and the bottom row shows the close-up views
of a single cell. CMS takes both topology and sharp features into account and better approximates the original tetrahedron than
the other methods.

and our method. The top row of Figure 7 shows the result-
ing surfaces of these algorithms and the bottom row shows
close-up views for a single cell. Here, we use a uniform grid
and only compare their performance on preserving sharp
features and maintaining consistent topology. The original
marching cubes algorithm does not preserve sharp features.
Except for CMS, these methods do not take topology into
account, Hence, there are holes and cracks in the extracted
surfaces in Figure 7(b)-(d).

To compare CMS with EMC and DC quantitatively, we
performed the following experiment. Three tetrahedra are
generated randomly in a limited space and their union is used
as the input model. We first convert it into Hermite data and
apply EMC, DC and CMS to this model to extract surfaces.
We then measure the geometric distances between the re-
sulting surface for each method and the input model. This
experiment was repeated many times and Table 2 summa-
rizes the average error for each case of the marching cube
lookup table for each method. CMS has the lowest errors for
all cases.

We demonstrate the effectiveness of our algorithm on the
several possible applications using volumetric data: CSG
modeling, level of details and remeshing. CSG modeling is
the classical application for volume representations. After
applying boolean operations on several volume data, CMS
is used to generate a mesh for the resulting CSG model. In
Figure 8(a-c), we show the resulting models at different lev-
els of details for the CSG model constructed by the union
of a cube and a cylinder, and then subtracting a sphere from

case times DC EMC CMS
1 3,590,980 0.01473 0.00586 0.00383
2 1,554,028 0.02309 0.01310 0.01013
3 207,302 0.10027 0.01801 0.01263
4 30,972 0.23064 0.00601 0.00422
5 803,311 0.03779 0.02631 0.02011
6 101,875 0.11998 0.02737 0.02633
7 12,198 0.17139 0.09565 0.01628
8 109,141 0.03979 0.02831 0.02184
9 72,201 0.04721 0.03525 0.02492

10 4,237 0.19682 0.05283 0.04541
11 70,238 0.04789 0.03535 0.02620
12 30,706 0.09845 0.04559 0.02419
13 1,405 0.85461 0.92935 0.00100
14 70,238 0.04821 0.03573 0.02653

Table 2: Average geometric errors for the experiment of
randomly sampling three tetrahedra. For each case in the
marching cube lookup table, we record how many times it
happens and the average error for each method. Overall,
CMS approximates the input model better than the other two
and has the lowest average error for each case.

it. Here, to clearly show the resulting models, flat shading is
used. Table 3 shows the number of resulting triangles at dif-
ferent levels of details and the time of extracting surfaces for
them. The time is only for surface extraction from the input
volume data, not including the time of converting the input
model to its volumetric representation. It was measured on

c© The Eurographics Association and Blackwell Publishing 2005.
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(a) (b) (c) (d)

Figure 8: The results of CSG modeling and level of details. (a)-(c) Different levels of details for a CSG model constructed by
the union of a cube and a cylinder, and then subtracting a sphere from it. (d) A more complicated CSG model generated by
subtracting a sphere from the body of a dragon model and then adding a sphere at its mouth.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Remeshing. The input model is the polygonal
model (a) for a text “EG.” After applying CMS to the input
model with θ = 0.7, we obtain the remeshed result (c). For
a better comparison, (b) and (d) shows the close-up views
for (a) and (c). (e) and (f) shows the remeshing results while
using θ = 0.8 and θ = 0.9.

a desktop PC with an Intel Pentium IV 3.2GHz CPU with
1GB memory. Figure 8(d) demonstrates a more complicated
CSG model generated by subtracting a sphere from the body
of a dragon model and then adding a sphere at its mouth.

Remeshing is another application of volumetric represen-
tation. Given a polygonal mesh (Figure 9(a)), we first con-

level 1 2 3
#triangle 1,688 4,880 14,568
time (ms) 16.23 32.14 66.08

Table 3: Statistics for Figures 8(a-c).

source θ = 0.7 θ = 0.8 θ = 0.9
#triangle 2,460 39,826 41,118 75,084
time (ms) 126.38 125.38 208.50

Table 4: Statistics for Figure 9.

vert it into a volume representation by sampling its distance
field and normals on a fine uniform grid. Applying CMS
algorithm to this volume gives a remeshed version of the
original mesh (Figure 9(c)), which has a better tessellation
than the input. For a better comparison, Figure 9(b,d) show
the close-up views of (a,c). Figure 9(e,f) show the remesh-
ing results for different values of θsharp which is defined in
EMC [KBSS01]. This value affects the quality of remeshing.
In Figures 9(c,e,f), the triangles representing the flat regions
such as in the character E are almost the same. On the other
hand, more triangles are generated to represent the regions
with higher curvatures such as in the character G for a larger
θsharp. Additionally, sharp features are well preserved. Ta-
ble 4 shows the number of resulting triangles and the time
for surface extraction for Figure 9.

5. Conclusion

In this paper, we have proposed the cubical marching squares
algorithm for surface extraction from volume data which
preserves sharp features, maintains consistent topology, gen-
erates surface adaptively without crack patching and elimi-
nates inter-cell dependency. This method has the following
unique features: (1) Hermite data is used to solve the prob-
lem of topological ambiguity; (2) the problem of cracks be-

c© The Eurographics Association and Blackwell Publishing 2005.



C.-C. Ho et al. / Cubical Marching Squares

tween adjacent cells when using a multi-resolution represen-
tation for the data is solved without crack patching because
the shared geometric component is common; (3) 3D features
can be reconstructed starting from the 2D features located
on the faces of the cells; this avoids inter-cell dependencies;
hence, it has potential to be implemented on GPUs. These
features make our method quite simple, relatively easy to
implement and, at the same time, effective.

We have partially implemented our algorithm on GPU.
However, the resulting speed is only comparable to our CPU
implementation. As many other GPU algorithms, the bottle-
neck is the data transfer between CPU and GPU. In the fu-
ture, we plan to fully implement our algorithm on GPU. We
believe that our algorithm will benefit from the improvement
on the bus bandwidth between CPU and GPU.
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