
New Models and Methods for Matting and Compositing

Yung-Yu Chuang

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2004

Program Authorized to Offer Degree: Computer Science & Engineering





University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Yung-Yu Chuang

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Co-Chairs of Supervisory Committee:

Brian Curless

David H. Salesin

Reading Committee:

Brian Curless

David H. Salesin

Richard Szeliski

Date:





In presenting this dissertation in partial fulfillment of the requirements for the Doctoral degree at

the University of Washington, I agree that the Library shall make its copies freely available for

inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly

purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying

or reproduction of this dissertation may be referred to Bell and Howell Information and Learning,

300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the

manuscript made from microform.”

Signature

Date





University of Washington

Abstract

New Models and Methods for Matting and Compositing

by Yung-Yu Chuang

Co-Chairs of Supervisory Committee:

Professor Brian Curless
Computer Science & Engineering

Professor David H. Salesin
Computer Science & Engineering

Matting and compositing are fundamental operations in graphics and visual effects. Despite having

enjoyed wide usage for many years, traditional matting and compositing have limitations. Tra-

ditional matting methods either require special setups or cannot handle objects with complex sil-

houettes. Furthermore, the traditional compositing model is effective in modeling color blending

effects but not reflection, refraction, and shadows. In this dissertation, we address these limitations

and present a set of new compositing models and matting methods. To pull mattes of complex sil-

houettes from natural images, we introduce a principled statistical approach called Bayesian image

matting. We also extend this algorithm to handle video sequences with the help of optical flow

computation and background estimation. On the compositing side, previous work on environment

matting has been shown to handle refraction and reflection, but the resulting mattes are not very

accurate. We propose a more accurate environment matting model and method that requires us-

ing more images. For shadows, we develop a physically-motivated shadow compositing equation.

Based on this equation, we introduce a shadow matting method for extracting shadow mattes from

videos with natural backgrounds, and we demonstrate a novel process for acquiring the photomet-

ric and geometric properties of the background to enable creation of realistic shadow composites.

Finally, we present a novel application of Bayesian image matting for animating still pictures.
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Chapter 1

INTRODUCTION

Matting and compositing are fundamental operations in graphics. In the matting process, a

foreground element of arbitrary shape is extracted from an image. In the compositing process, the

extracted foreground element is placed over a novel background image. Matting and compositing

were originally developed for film production. Today, matting and compositing have become crucial

and frequently used operations in visual effects production. They enable directors to insert new

elements seamlessly into a scene or to transport an actor into a completely new location. Nearly

all modern movies utilize digital matting and compositing in their production; notable examples

include “Jurassic Park,” “The Matrix,” and “The Lord of the Rings.” The potential importance of

matting and compositing can perhaps be best indicated by observing how lucrative visual effects

movies have become [80]. According to “The Internet Movie Database,” as of April 2004, six of

the ten best-selling movies ever released also won the “Best Visual Effects” Academy Awards.1 We

would argue that the success of these films is directly related to their stellar visual effects. Digital

matting and compositing, therefore, have huge money-making potential. In addition to being put to

use for visual effects, digital matting and compositing are used in much of today’s media, including

magazines, 2D arts and graphics, television, advertising, video post production, and multimedia title

development.

Although they were developed several decades ago, matting and compositing are still somewhat

of a black art. Not much scientific study has been done until recently. Hence, most existing matting

and compositing techniques are still fairly ad hoc and often limited to solving a restricted version

of the general problem. Motivated by some recent promising work on matting and compositing,

this dissertation provides a novel set of new models and principled techniques so that matting and

1The other three of them, “Start Wars: Episode I” and two “Harry Potter” movies, are fantasy movies. It would be
impossible to make them without special effects. The only exception is Pixar’s animation, “Finding Nemo.”
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compositing can be used in less restricted environments, model more complex phenomena, and be

applied to exciting new applications.

In the remainder of this chapter, we first discuss the evolution and terminology of matting and

compositing. We then review the relevant scientific literature on matting and compositing. Next, we

define the problems that this dissertation attempts to solve and state the general solution strategies.

The chapter concludes with an overview of this dissertation.

1.1 History and terminology

1.1.1 The optical era

The origins of matting and compositing can be traced back to photography and cinematography. One

early composite example is the massive print, “The Two Ways of Life,” created by the photographer

Oscar Rejlander in 1857 by selectively combining 32 different negatives [18]. The development of

compositing, however, was mostly driven by the need for cinematography to convincingly merge

images filmed at different times or locations onto a single strip of film. One of the early tricks for

compositing is the double exposure technique, blocking out part of the film during the first shot in

order to preserve an unexposed area for the addition of other elements in later shots [74].

For combining films, in the early 1900s, optical printers were built, and the art of optical com-

positing was born. In the optical compositing process, three pieces of film are required to create a

composite [11]:

• Foreground plate: the film containing the foreground element to be composited onto a differ-

ent background.

• Matte: a monochrome film that determines the opacity of the foreground plate. The matte out-

side the foreground element is black to hold out the unwanted background in the foreground

plate. The matte inside the foreground element is clear.

• Background plate: the backdrop onto which the foreground will be composited. This back-

ground usually comes from a filmed background, a miniature model, or a matte painting (a

photorealistic painting of a real or imaginary scene).

During the compositing process, first, the background plate is exposed through negative of the matte
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onto a film strip to hold a copy of the background scene with an unexposed area of the same shape

and size of the foreground element. This film strip is then rewound and re-exposed to the foreground

plate, along with the matte [74]. Exposure occurs only where the matte is clear, effectively com-

positing the foreground element onto the background plate. The film strip now holds the composite.

With optical printers, compositing became an easy task. However, generating appropriate mattes

was still difficult and many techniques were invented. The process of producing mattes is referred

to by a variety of terms including matting, keying, matte extraction, and pulling a matte. In this

dissertation, we refer to this process as matting. When compositing a sequence of images, the matte

has to move through the sequence to track the foreground element. Such a moving matte is often

referred to as a traveling matte. In this dissertation, we refer to the process of generating a traveling

matte as video matting.

Most optical matting techniques involve shooting the foreground element in front of a constant-

colored backdrop in order to easily isolate the foreground element from the unwanted background.

For example, in the Williams process [74], the foreground element was photographed against an

evenly lit plain black backdrop. The matte was essentially generated by enhancing the contrast of

the film of the foreground element. This was done by copying the film a number of times using

high-contrast films. Another matting technique of this kind is the color difference method devel-

oped and patented by Petro Vlahos. In this method, the foreground element was often filmed in

front of a bright blue background screen. Hence, this method is also known as blue screen matting.

In a simpler form of the color difference method, the greater of red and green channels is subtracted

from the blue channel and the result is inverted to map to the opacity value. This method was the

most popular and effective optical matting method from the mid-1960s until the advent of digital al-

ternatives in the late 1980s. With bluescreen photography, other color information can also be used;

for example, luma keying uses luminance values to distinguish the foreground from the background

while chroma keying uses chrominance values.

When filming with specialized backdrops was impossible or impractical, effects artists had to

draw their mattes by hand. It was done on an apparatus called a rotoscope, invented by animator Max

Fleischer in 1917. Hence, this process is generically known as rotoscoping. Although eliminating

the need for a specialized backdrop, rotoscoping is an intricate and time-consuming process.
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1.1.2 The digital era

Since the 1980s, with the advancement of digital technology, optical compositing equipment has

been largely replaced with computers and specialized software. However, most techniques and

concepts of optical compositing are directly applicable to the digital realm. Thus, a digital matte was

created to composite two digital images in direct emulation of the optical compositing technique.

Early digital matting and compositing programs simply mimicked the techniques developed for

optical compositing.

The use of computers, however, enabled the development of improved matting and compositing

processes. For example, it helps improve blue screen matting techniques by allowing additional

controls to adjust the relationships between the channels and the thresholds of certain values until a

visually acceptable matte is obtained [74]. Digital matting technology also makes the setup for blue

screen matting easier. Unlike in optical processes, the exact shade and color of the backdrop is not

critical when setting up and taking a shot. The operator simply identifies a few background pixels,

and the matting software can then be calibrated to remove only those exact colors. An example is

Mishima’s algorithm [60] that we will describe thoroughly in Section 1.2.

For rotoscoping, artists can draw an editable (e.g., B-spline) curve around the foreground el-

ement at selected keyframes, often with the help of an image snapping tool that adheres to high-

gradient areas. The curves can then be interpolated over time for the frames in between. However,

such automation usually only works for a simple shape that moves in a relatively linear fashion.

Hence, more often than not, every matte in a sequence still has to be hand-drawn. In addition, a post

processing step is needed to convert the contour into opacity profiles. This step is usually done by

ad hoc feathering, an operation that blurs edges.

Digital technology also enabled the development of new matting methods. For example, differ-

ence matting is another matting method that does not require filming the foreground element against

a constant-color screen. Difference matting requires two versions of a scene to be shot, one with the

foreground element, and one without. The image filmed without the foreground element is called a

clean plate. Difference matting takes the difference between these two shots and maps that differ-

ence to an opacity value [72]. However, this process is error prone where there are similarities in

color between foreground and background, requiring additional user interaction to correct the matte.
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1.2 Related work

The previous section presents the matting and composting techniques mostly developed by the film

industry. In this section, we discuss some recent scientific studies that are generally related to

digital matting and compositing. Discussion of work related to more specific problem domains that

we address in this dissertation is deferred to the “Related work” sections of individual chapters.

The digital analog of the optical composting process can be summarized by the compositing

equation [69],

C = αF + (1− α)B , (1.1)

where C, F , and B are the composite, foreground, and background images, respectively, and α is

the matte.2 As in optical compositing, the matte represents each pixel’s opacity component used to

linearly blend between foreground and background colors.

Compositing, as described by equation (1.1), is a straightforward operation. There have been

roughly three major developments in digital compositing [47]. In 1977, Alvy Ray Smith and Ed

Catmull coined the term alpha channel for the matte because the matte plays a similar role as α in

the classic linear interpolation formula, αa+(1−α)b. They also invented the concept of integral

alpha to treat alpha as integral to an image [86]. In 1980, Bruce Wallace and Marc Levoy showed

how to blend partially transparent images to produce images with alpha, making compositing op-

eration associative [104]. In 1984, Thomas Porter and Tom Duff [69] introduced the compositing

algebra of 12 compositing operators and showed how synthetic images with alpha could be useful

in creating complex digital images. In their paper, the composting operation described by equa-

tion (1.1) is named the over operation (in particular, F over B). They also introduced the concept

of pre-multiplication by alpha so that an identical operation can be applied to the pre-multiplied

rgb channels as well as the alpha channel. As later proven by others [14, 87], pre-multiplication is

important for many image processing operations such as filtering and subsampling.

Matting, on the other hand, is more difficult. The matting process is the inverse process of

compositing, starting from a photograph (essentially composite images C) and attempting to solve

for the foreground image F , background image B, and alpha matte α. Since F , B, and C have three

2We use the symbol α to represent both the opacity value at a pixel and the opacity image taken as a whole. At times,
to be more specific, we use α(p) for the opacity value at a pixel p, the same for C, F and B.
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color channels each, for each pixel, we have a problem with three equations and seven unknowns.

Hence, matting is inherently under-constrained, and most matting techniques solve it by controlling

the background, adding images, or adding a priori assumptions about the foreground, background,

and alpha.

By shooting the foreground object against a known constant-color background, blue screen mat-

ting approaches reduce the number of unknows to four. This problem is, however, still under-

constrained. Hence, some simple constraints and heuristics have been employed to make the prob-

lem tractable. Some of these constraints and heuristics are nicely summarized by Smith and Blinn [88].

One such example is the color difference method invented by Vlahos; by making an assumption

about the relative proportions of red, green, and blue for the foreground colors, a matte is obtained

with the equation,

α = 1− a1(Cb − a2Cg) , (1.2)

where Cb and Cg are the blue and green channels of the input image, respectively [88]. The user

can control the tuning parameters, a1 and a2, until a satisfactory matte is obtained. While generally

effective and easy to implement, these approaches are in fact clever tricks. They are not mathemati-

cally valid, require an expert to tune them, and can fail on fairly simple foregrounds.

A more recent improvement on blue screen matting was developed by Mishima [60] based on

representative foreground and background color samples. In particular, the algorithm starts with

two identical polyhedral (triangular mesh) approximations of a sphere in rgb space centered at the

average value B of the background samples. The vertices of one of the polyhedra (the background

polyhedron) are then repositioned by moving them along lines radiating from the center until the

polyhedron is as small as possible while still containing all the background samples. The vertices of

the other polyhedron (the foreground polyhedron) are similarly adjusted to give the largest possible

polyhedron that contains no foreground pixels from the sample provided. Given a new composite

color C, then, Mishima casts a ray from B through C and defines the intersections with the back-

ground and foreground polyhedra to be B and F , respectively. The fractional position of C along

the line segment BF is α. Although it requires the user to identify background samples, Mishima’s

algorithm places less restrictions on the backdrop colors and lighting conditions.

While blue screen matting is generally effective, taking a photograph of the foreground object
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in front of a bright blue screen entails both restrictions on the foreground colors and blue spill

(reflection of blue light from the blue screen on the foreground object). To avoid these problems,

an alternative is to use dual-film techniques. The dual-film methods require the use of two separate

films that could be exposed to the same scene simultaneously. That is usually implemented using

a beam-splitting prism that divides the light entering through the lens to send identical images of

the scene toward two separate films. Different filters are often used for these two films. One recent

example of dual-film matting is the infrared (IR) matting system designed by Debevec et al. [29].

In their system, the backdrop is made of a material reflecting infrared light but not visible light.

Infrared light sources are used to illuminate the backdrop (and inevitably the foreground object).

A monochrome camera with an IR-pass filter is used for obtaining the matte while the other CCD

camera records the foreground colors. Because the foreground object reflects much less infrared

light than the foreground object, the matte can easily be computed by thresholding the IR-filtered

image. Ultraviolet light can also be used to produce mattes in a similar way. Another example of

dual-film methods is the invisible-signal keying system developed by Ben-Ezra [6]. In this system,

the backdrop is a silver screen preserving the polarization of light. A polarized light is used to

illuminate the scene. The light reflected by the background keeps polarization, but the light reflected

by the foreground object loses it. A polarization beam splitter then divides the light to two cameras

to create an “in-phase” image with a silver background and an “out-of-phase” image with a dark

background. The differences of these two images are then mapped to opacity values to form a

matte.

Some dual-film methods use information other than light for matting. In depth keying [38],

the foreground object is segmented by thresholding the depth values of the scene; and, in thermo

keying [117], the temperature is used to isolate the actor from his surrounding. These techniques

get rid of the need for backdrops and are more suitable for outdoor shooting. However, the methods

using measurements other than light often lead to “jagged” mattes because those measurements are

not directly related to the partial coverage that matting processes attempt to estimate. Smoothing

such mattes by feathering can help with the jaggedness but does not generally compensate for gross

errors. This makes these methods less suitable for pulling high-quality mattes for objects with

intricate shapes such as hair strands and fur. A common weakness for all dual-film methods is their

use of expensive specialized cameras.
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To overcome the under-constrained problem, Smith and Blinn [88] provided a triangulation

solution for matting that was independently (and much earlier) developed by Wallace [105]: take

an image of the same object in front of multiple known backgrounds. This approach leads to an

over-constrained system and can be solved using a least-squares framework. While this approach

requires even more controlled studio conditions than the single solid background used in blue screen

matting and is not immediately suitable for live-action capture, it does provide a means of estimating

highly accurate foreground and alpha values for real objects.

When filming with specialized backdrops is impossible or impractical, it is necessary to pull a

matte from a photograph of the foreground object taken with a natural background. In this case,

we have to solve the full matting problem with seven unknowns. We call this problem natural

image matting. Rotoscoping is a commonly used technique for solving this problem. However, as

stated in the previous section, rotoscoping is often inefficient, and the conversion of mattes is ad

hoc. Mitsunaga et al. [61] developed the AutoKey system to improve the rotoscoping process for

video matting. In this system, the keyframe roto-curves are tracked over time so as to adhere to

foreground contours. Tracked results tend to require less editing than interpolated results, but they

often still require frame-by-frame hand adjustment in order to pull a high-quality matte. To avoid

using ad hoc feathering in the conversion from contours to opacity profiles, they propose an adaptive

feathering method. By taking the partial derivatives on both sides of the compositing equation (1.1),

they observe that, under the assumption that F and B are roughly constant,

Oα ≈ 1

F −B
OC , (1.3)

where O =
[

∂
∂x , ∂

∂y

]

is the gradient operator. We call the above equation the AutoKey constraint.

The AutoKey constraint suggests that the amount of blur in the matte depends on the image gra-

dient. This approach, however, makes strong smoothness assumptions about the foreground and

background and is designed for use with fairly hard edges in the transition from foreground to back-

ground; i.e., it is not well-suited for transparency and hair-like silhouettes. Recently, Agarwala et al.

proposed a keyframe-based system to effectively reduce the amount of human effort for rotoscop-

ing [1]. However, the difficulties of handling intricate silhouettes remain.

This dissertation is mainly inspired by two recent developments in matting and compositing:

a probabilistic natural image matting algorithm by Ruzon and Tomasi [76] and environment mat-
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ting and compositing by Zongker et al. [118]. The first development is related to pulling mattes

from footage filmed in front of a natural background. Although such techniques exist, previous

approaches fail to handle foreground objects with complex shapes. Ruzon and Tomasi proposed

a statistical approach to address this deficiency [76]. With a modest amount of user intervention,

their algorithm is capable of pulling a matte for a foreground object with intricate boundaries from

a natural background by building statistics for foreground and background colors. Along this line,

we develop a more principled matting approach for handling images and videos filmed with natural

backgrounds. The second development is related to modeling phenomena that the traditional com-

positing model fails to capture. Although the traditional compositing model can model transport

paths of scalar (non-color) attenuation and partial pixel coverage, it does not model how objects

refract and reflect light. Zongker et al. introduced environment matting and compositing to general-

ize the traditional matting and compositing processes to incorporate refraction and reflection [118].

Following their work, we propose a novel compositing model for shadows and a practical process

for shadow matting and compositing. Furthermore, we improve the environment matting algorithm

to acquire more accurate environment mattes.

1.3 Problem statement

The compositing equation (1.1) defines how to perform the compositing operation, but not what

compositing attempts to accomplish. To address this question, we seek ideas from practical com-

positing experts. The book, “The Art and Science of Digital Compositing,” gives the following

definition for digital compositing [18]:

Digital Compositing: The digitally manipulated combination of at least two source

images to produce an integrated result.

What does integrated mean? Another book on compositing, “Digital Compositing for Film and

Video,” offers an insight into this question [115]:

The ultimate artistic objective of a digital composite is to take images from a variety of

different sources and combine them in such a way that they appear to have been shot at

the same time under the same lighting conditions with the same camera.
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Hence, we can view compositing as an image-based rendering approach, because it uses images

(samples of light) as the fundamental modeling primitives to synthesize a photorealistic composite

image (a novel set of light samples).

An image C, either captured by an imaging system or synthesized by a rendering algorithm,

records a discrete set of light samples over an image plane. For a given pixel p, the sample records

an average color C(p) of the light rays that strike that pixel. Each ray records the light transport from

lights to the camera through a scene. Hence, the image C is a function of the camera characteristics,

the lighting conditions, and the scene model,

C = Rendering(Model, Camera, Light) . (1.4)

Previous image-based rendering approaches synthesize an image by manipulating a set of images

acquired by either varying the camera views for a fixed scene and lighting (view interpolation [35,

49, 81, 114]) or varying the lighting conditions for a fixed scene and camera (relighting [28, 55]), or

a combination of the two [58]. For example, for view interpolation, a set of images are taken from

different viewpoints for a fixed scene and lighting condition,

Ci = Rendering(Model, Camera(i), Light), i = 1 . . . n . (1.5)

The image C ′ for a novel view Camera′ is then obtained by manipulating this set of images Ci.

In the context of compositing, we assume that the scene model can be decomposed into two

parts, a foreground model ModelF and a background model ModelB . Hence,

C = Rendering({ModelF , ModelB}, Camera, Light) . (1.6)

A compositing model describes how to approximate C from a foreground image F and a background

image B through a matte, where

F = Rendering({ModelF }, Camera, Light) , (1.7)

B = Rendering({ModelB}, Camera, Light) . (1.8)

To achieve this, the matte has to carry information about the light interaction between the foreground

model and the other parts of the scene (the background model and lights). The traditional composit-

ing model captures the inter-visibility between the foreground model and the background model.
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For example, in Figure 1.1(a), the foreground model only partially covers the pixel p. Hence, the

matte is supposed to be an opacity map for the foreground object, correctly modeling partial cov-

erage at the blending edges, as well as non-chromatic, non-refractive foreground transparency. The

traditional compositing equation (1.1) describes how to blend the colors of F and B through the

matte. This model, however, incorrectly represents some common lighting phenomena such as the

occlusion of light in shadows (Figure 1.1(b)) and the change of the light path in refraction and

reflection (Figure 1.1(c)).

The goal of a matting process is to extract the matte, essentially explaining how the image C is

formed based on the compositing model. This process, however, is often ill-posed because there is

more than one possible scene configuration that would result in the same image C. Common strate-

gies for solving an ill-posed problem include reducing the number of unknowns, adding constraints,

and adding statistical priors to the solution. For example, to reduce the number of unknowns, we

can take a photograph of the foreground model in front of a “known” background model. We can

even “control” the background model so that the matting problem becomes easier. An example of

traditional matting algorithms using this strategy is blue screen matting. We call the methods requir-

ing “known” backgrounds active methods and the ones without this restriction passive methods. To

add constraints, we can take several photographs of the foreground model in front of different back-

ground models. An example is the triangulation algorithm. We call the methods requiring multiple

images multiple-frame methods and the ones using a single image single-frame methods. To reduce

the number of required images, a multiple-frame solution is often combined with an active method

to control the background models and to explore the space of all possible backgrounds more effi-

ciently. Hence, matting algorithms primarily differ in the number of images required and whether

the background is “controlled” during the acquisition. For a passive single-frame matting problem,

to make the problem tractable, statistical priors (or just “priors”) are often added to arrive at plausi-

ble solutions. An example is the Ruzon-Tomasi algorithm for natural image matting. Algorithms in

this category differ in terms of the choice of priors and the method of applying them to arrive at a

solution.

Table 1.1 gives a classification of previous matting algorithms before our work, based on whether

the acquisition process is “controlled” and the number of images required. Generally, for matting,

we prefer passive approaches over active ones and single-frame methods over multiple-frame tech-
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p

(a) Partial coverage

p

(b) Refraction/reflection

p

light

(c) Shadows

Figure 1.1: Light transport and compositing. In the scenes shown in this figure, the spherical object
is taken to be the foreground, while the rest of the scene constitutes the background. The traditional
compositing equation effectively models partial coverage (a), assuming that the light goes straight
from the background through the foreground to the camera. However, in the case of refraction and
reflection (b), the light transport path is distorted by the foreground object and is not a straight
line. Hence, the traditional compositing equation cannot handle this lighting effect. Moreover, this
equation cannot handle shadows (c), which is the result of light occlusion.
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Table 1.1: A summary of previous matting and compositing methods and the roadmap of this
dissertation.a This table summarizes existing approaches before our work. Text in bold represents
our work, to be discussed in later chapters.

Traditional matting

and compositing

Shadow matting

and compositing

Environment matting

and compositing (EM)

lighting
phenomena

partial coverage
transparency

shadows refraction
reflection

compositing C =αF +(1−α)B

Porter & Duff [69]
Chapter 4

C =F +
∫

W(x)B(x)dx

Zongker et al. [118]b

m
at

tin
g

pa
ss

iv
e

single
-frame

depth/thermo keying
rotoscoping
Ruzon-Tomasi [76]
Chapter 2

Chapter 4

multiple
-framec

Chapter 3

ac
tiv

e

single
-frame

blue screen matting
difference mattingd

dual-film [6, 29]e

multiple
-frame

O(1): triangulation [88] O(log k): Zongker [118]
O(k): Chapter 5

a This table is by no means complete; only representative work is listed. For matting algorithms, this table is more a
categorization than a comparison. Because of the assumptions they make, these techniques actually solve related but
somewhat different problems.

b The original environment matting equation proposed by Zongker et al. is slightly less general than the one listed here.
c The algorithms in this category take a sequence of images as input and output either a single matte or a sequence of

mattes (e.g., video matting in Chapter 3). Because such algorithms usually take advantage of the temporal coherence
within the input sequence, they do not work for a single image.

d While the background is not “controlled” in difference matting, the camera path often has to be controlled for the ease
of obtaining clean plates. Hence, we count it as an active approach.

e This approach essentially requires two frames, but they are taken simultaneously.
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niques. However, this does not mean that passive single-frame algorithms in Table 1.1 are superior

to active multiple-frame techniques. All these techniques make different assumptions for the in-

herently under-constrained matting problem and turn out to solve related but somewhat different

problems, each with their own pros and cons. For example, although blue screen matting meth-

ods require only a single frame, they make assumptions about and restrictions on the colors of the

foreground object. On the other hand, the triangulation method requires multiple frames but places

no such restrictions. As another example, rotoscoping does not involve expensive blue screens but

requires intensive user intervention and only works for objects that have simple outlines. Hence, no

single matting technique is clearly better than another and the choice of which one to use depends

on the particular situation [18].

1.4 Overview of dissertation

Table 1.1 also provides a roadmap for this dissertation. The next two chapters explain our approach

for matting from natural backgrounds. Chapter 2 describes our Bayesian framework for pulling

mattes from images. Chapter 3 extends this framework to handle videos by interpolating user inputs

using bidirectional optical flows. A novel technique for smoke matte extraction is also demon-

strated. Chapters 4 and 5 deal with the phenomena that the traditional composting model fails to

capture: shadows, reflection, and refraction. In Chapter 4, we develop physically-based shadow

matting and compositing equations and use them to pull a traveling (moving) shadow matte from a

source video filmed with a natural background. For shadow compositing, we propose an acquisition

process for obtaining the photometric and geometric properties of the target background scene. In

Chapter 5, we present our environment matting method for capturing a more accurate matte than

the previous approach, at the expense of using more structured light backdrops. Chapter 6 describes

an application of our Bayesian matting algorithm to creating a video texture from a single still im-

age. Finally, Chapter 7 concludes this dissertation by summarizing our contributions and suggesting

future research directions.
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Chapter 2

BAYESIAN IMAGE MATTING

2.1 Introduction

While active matting approaches are usually more effective, they often require expensive setups,

and the unnatural backdrops tend to induce worse performances by actors. Moreover, at times, it

is impractical (e.g., outdoor shooting), inefficient (e.g., shooting for background editing1), or even

impossible (e.g., pulling a matte from stock footage) to employ active approaches. In these cases,

passive approaches are preferable. From Table 1.1, one option for pulling mattes without controlled

backdrops is depth keying or thermo keying. While automatic, both methods require expensive,

specialized cameras. In addition, these methods are not suitable for foreground objects with complex

silhouettes, and they cannot be applied to stock footage. Another option is rotoscoping. Rotoscoping

eliminates the requirement for expensive cameras and is applicable to stock footage, but at the

expense of requiring user intervention. Still, like depth or thermo keying, it fails to pull satisfactory

mattes for objects with intricate boundaries.

Recently, statistical approaches have been proposed to solve the natural image matting problem.

These approaches attempt to pull mattes from natural (arbitrary) backgrounds by sampling colors

from known foreground and background regions in order to obtain statistics for the foreground and

background colors along the boundary. These statistics are then used to pull a matte in an unknown

region in a statistically meaningful way [93]. As with rotoscoping, these methods require modest

amounts of user interaction. However, unlike rotoscoping, they can handle difficult cases such as

thin whisps of fur or hair.

In this chapter, we present a novel statistical method for solving the natural image matting prob-

lem.2 We first survey the previous statistical approaches for natural image matting (Section 2.2), all

1In background editing, an object is inserted between the foreground element and the background plate
2This chapter describes joint work with Brian Curless, David H. Salesin and Richard Szeliski, first presented in IEEE

CVPR 2001 [21].



16

of which are fairly ad hoc. We then introduce a new, more principled approach to natural image

matting, based on a Bayesian framework (Section 2.3). While no algorithm can give perfect results

(given that the problem is inherently under-constrained), our Bayesian approach appears to provide

an improvement over existing approaches (Section 2.4). However, in regions of low contrast or high

textures, the Bayesian algorithm may fail to give satisfactory results. We propose a regularization

approach to improve the mattes for these cases (Section 2.5). Finally, we conclude this chapter by

discussing extensions and applications of the Bayesian matting algorithm (Section 2.6).

2.2 Related work

As mentioned in Section 1.3, the natural image matting problem is under-constrained. Statistical

approaches are effective for solving under-constrained problems because they provide a framework

to encode prior knowledge about possible solutions. To build priors, most statistical matting ap-

proaches require the user to supply a hint image that partitions the input image into three regions:

“foreground”, “background,” and “unknown,” with the background and foreground regions having

been delineated conservatively. We call such a hint image a trimap. In the unknown region, the

matte can be estimated using the color statistics of the known foreground and background regions.

Most statistical matting techniques consist of two steps [93]. First, foreground and background

color samples for each pixel in the unknown region are collected from the foreground and back-

ground regions. Based on the collected samples, statistical representations are calculated to sum-

marize the foreground and background appearances. Second, the matte is estimated for each pixel

in a particular order, given the foreground and background representations. In this section, we re-

view three such techniques: Knockout,3 developed by Ultimatte (and, to the best of our knowledge,

described in patents by Berman et al. [7, 8]); the Ruzon-Tomasi algorithm [76]; and the technique

of Hillman et al. [40]. The first two algorithms predate our Bayesian algorithm, while Hillman’s

algorithm is contemporary with ours.

For Knockout, after user segmentation, the next step is to extrapolate the known foreground and

background colors into the unknown region. In particular, given a point in the unknown region, the

3Although Knockout is not strictly a statistical method, in this section, we generically classify the methods solving a
problem using samples as statistical approaches. By this definition, Mishima’s method is also a statistical method, but
it is for blue screen matting, not natural image matting.
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Figure 2.1: Summary of statistical natural image matting algorithms. Each of the algorithms shown
in this figure requires a trimap to specify known background, known foreground, and unknown
pixels. All algorithms estimate alpha for the unknown pixels using local color distributions of the
nearby known foreground and background regions. The dark gray areas in (b) and (c) correspond
to segments within the unknown region that will be evaluated using the same statistics derived from
the square (b) or circular (c) region’s overlap with the labeled foreground and background. The dark
gray and light gray bands in (d) represent the computed unknown pixels while the marked pixel is
being computed. The dark gray and light gray circles are the neighborhoods used for collecting the
background and foreground statistics, respectively. Because the marked pixel is closer to the known
background region, the neighborhood for the background is smaller than that for the foreground.
Figures (e)-(h) show how matte parameters are computed using the Knockout, Ruzon-Tomasi, Hill-
man and our Bayesian approach, respectively.
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foreground F is calculated as a weighted sum of the pixels on the perimeter of the known foreground

region. The weight for the nearest known pixel is set to 1, and this weight tapers linearly with dis-

tance, reaching 0 for pixels that are twice as distant as the nearest pixel. The same procedure is used

for initially estimating the background B ′ based on nearby known background pixels. Figure 2.1(a)

shows a set of pixels that contribute to the calculation of F and B ′ of an unknown pixel.

The estimated background color B ′ is then refined to give B using one of several methods [8]

that are all similar in character. One such method establishes a plane through the estimated back-

ground color with normal parallel to the line B ′F . The pixel color in the unknown region is then

projected along the direction of the normal onto the plane, and this projection becomes the refined

guess for B. Figure 2.1(e) illustrates this procedure. Several simple variations on this plane compu-

tation and projection step are described in the patent [8].

Finally, Knockout estimates α according to the relation

α =
ϕ(C)− ϕ(B)

ϕ(F )− ϕ(B)
, (2.1)

where ϕ(·) projects a color onto one of several possible axes through rgb space (e.g., onto one of

the r-, g-, or b- axes). Figure 2.1(e) illustrates alphas computed with respect to the r- and g- axes.

In general, α is computed by projection onto all of the chosen axes, and the final α is taken as a

weighted sum over all the projections, where the weights are proportional to the denominator in

equation (2.1) for each axis.

Ruzon and Tomasi [76] take a probabilistic view that is somewhat closer to our own. First,

they partition the unknown boundary region into sub-regions. For each sub-region, they construct

a box that encompasses the sub-region and includes some of the nearby known foreground and

background regions (see Figure 2.1(b)). The selected foreground and background pixels are then

treated as samples from distributions P (F ) and P (B), respectively, in color space. The foreground

pixels are split into coherent clusters, and unoriented Gaussians (i.e., Gaussians that are axis-aligned

in color space) are fit to each cluster, each with mean F and diagonal covariance matrix ΣF . In the

end, the foreground distribution is treated as a mixture (sum) of Gaussians. The same procedure is

performed on the background pixels yielding Gaussians with mean B and covariance ΣB . Every

foreground cluster is then paired with every background cluster. Many of these pairings are rejected

based on various “intersection” and “angle” criteria. Figure 2.1(f) shows a single pairing for a
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Table 2.1: A summary of the five components in statistical natural image matting algorithms.

component Knockout Ruzon-Tomasi Hillman Bayesian

pixel ordering raster order region by region raster order onion peel

sample collection Figure 2.1(a) Figure 2.1(b) Figure 2.1(c) Figure 2.1(d)

color representation extrapolated
colors

axis-aligned
Gaussians

oriented line
segments

oriented
Gaussians

matte estimation Figure 2.1(e)
(equation (2.1))

Figure 2.1(f)
(MLa)

Figure 2.1(g)
(C ′B′/F ′B′)

Figure 2.1(h)
(MAPb )

color estimation extrapolated
colors

perturbation perturbation MAPb

a ML: maximum likelihood
b MAP: maximum a posteriori

foreground and background distribution.

After building this network of paired Gaussians, Ruzon and Tomasi treat the observed color C

as coming from an intermediate distribution P (C), somewhere between the foreground and back-

ground distributions. The intermediate distribution is also defined to be a sum of Gaussians, where

each Gaussian is centered at a distinct mean value C located fractionally (according to a given al-

pha) along a line between the mean of each foreground and background cluster pair with fractionally

interpolated covariance ΣC , as depicted in Figure 2.1(f). The optimal alpha is the one that yields an

intermediate distribution for which the observed color has maximum probability; i.e., the optimal

α is chosen independently of F and B. As a post-process, the F and B are computed as weighted

sums of the foreground and background cluster means using the individual pairwise distribution

probabilities as weights. The F and B colors are then perturbed to force them to be endpoints of a

line segment passing through the observed color and satisfying the compositing equation.

Instead of using axis-aligned Gaussians, Hillman et al. use principal component analysis (PCA)

to represent color samples with oriented line segments [40]. The choice of oriented line segments

is based on the observation that the color clusters tend to be prolate (cigar shaped) in rgb color

space. This is probably because the pixels are either of the same basic color with varying degrees of

illumination or else are part of a transition between two colors. The pixels in the unknown region are

processed in turn, by scanning the image in raster order until reaching the next unprocessed pixel p.



20

All unprocessed pixels within a fixed radius of p share the same background and foreground models.

For building the foreground model, pixels within a fixed radius of p in the known foreground region

are collected (see Figure 2.1(c)). The same procedure is used to generate the background samples.

PCA is used to find the major orientation of these color samples. Then, the collected color samples

are projected onto the major axis found by PCA, essentially discarding the variances on the minor

axes. Extreme points of the projected color samples are found to form the line segments F1F2 and

B1B2, as depicted in Figure 2.1(g), for the foreground and background, respectively.

Figure 2.1(g) illustrates the matte and color estimation procedure. Given the line segments

for foreground and background, to estimate the opacity value for an observed color C, the closest

points, F ′ and B′, to C on the line segments F1F2 and B1B2, respectively are found. Let C ′ be the

projection of C onto the line segment F ′B′. The opacity value α is then estimated as the ratio of

the lengths of line segments C ′B′ and F ′B′. Finally, the foreground and background colors, F and

B, are estimated by perturbing F ′ and B′ in a similar way as in the Ruzon-Tomasi algorithm.

To sum up, these statistical natural image matting approaches primarily differ in (1) the pixel or-

dering for matte estimation, (2) the sample collection procedure, (3) the foreground and background

color representations, (4) the matte estimation method, and (5) the foreground color estimation

method. Table 2.1 summarizes these five components of the statistical natural matting approaches

discussed in this chapter. In the next section, we present our own choices for these components.

2.3 Bayesian framework

The goal of a natural image matting algorithm is to solve for the foreground color F , the back-

ground color B, and the opacity α given the observed color C for each pixel within the unknown

region of the image. Like other statistical matting algorithms, we solve the problem in part by build-

ing foreground and background probability distributions from a given neighborhood. Our method,

however, uses a continuously sliding window for neighborhood definitions, marches inward from

the foreground and background regions (such a filling order is called an onion peel order), and uti-

lizes nearby computed F , B, and α values (in addition to these values from “known” regions) in

constructing oriented Gaussian distributions, as illustrated in Figure 2.1(d). Further, our approach

formulates the problem of computing matte parameters in a well-defined Bayesian framework and
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solves it using the maximum a posteriori (MAP) technique. In this section, we describe our Bayesian

framework in detail.

In MAP estimation, we try to find the most likely estimates for F , B, and α, given the obser-

vation C. We can express this as a maximization over a probability distribution P and then use

Bayes’s rule to express the result as the maximization over a sum of log likelihoods,

arg max
F,B,α

P (F, B, α |C) (2.2)

= arg max
F,B,α

P (C |F, B, α) P (F ) P (B) P (α) / P (C)

= arg max
F,B,α

L(C |F, B, α) + L(F ) + L(B) + L(α) ,

where L(·) is the log likelihood L(·) = log P (·), and we drop the P (C) term because it is a constant

with respect to the optimization parameters. (Figure 2.1(h) illustrates the distributions over which

we solve for the optimal F , B, and α parameters.)

The problem is now reduced to defining the log likelihoods L(C |F, B, α), L(F ), L(B), and

L(α). Using Gaussian noise to model the error in image acquisition, we can model the first term by

measuring the difference between the observed color and the color predicted by the estimated F , B,

and α,

L(C |F, B, α) = −‖C − αF − (1− α)B‖2/σ2
C . (2.3)

This log-likelihood models error in the measurement of C and corresponds to a Gaussian probability

distribution centered at C = αF + (1− α)B with standard deviation σC .

We use the spatial coherence of the image to estimate the foreground term L(F ). That is, we

build the color probability distribution using the known and previously estimated foreground colors

within each pixel’s neighborhood N . The neighborhood N of a pixel p is initially set as a circular

region of a user-defined radius centered at p and incrementally expanded until there are more than

15 samples within N . To model the foreground color distribution more robustly, we weight the

contribution of each nearby pixel p in N according to two separate factors. First, we weight the

pixel’s contribution by α(p)2, which gives colors of more opaque pixels higher confidence. Second,

we use a spatial Gaussian fall-off g(p) with σ = 8 to stress the contribution of nearby pixels over

those that are further away. The combined weight is then w(p) = α(p)2g(p).
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Given a set of foreground colors and their corresponding weights, we first partition colors into

several clusters using the method of Orchard and Bouman [64]. For each cluster, we calculate the

weighted mean color F and the weighted covariance matrix Σ′F ,

F =
1

W

∑

p∈N

w(p) F (p) , (2.4)

Σ′F =
1

W

∑

p∈N

w(p) (F (p)− F ) (F (p)− F )
T

, (2.5)

where W =
∑

p∈N w(p). Because foreground color samples are also observations from a camera,

they are subject to the influence of imaging noise, as are the observations C. Hence, we should add

the same amount of measurement variance σ2
C to the covariance matrices Σ′F ,

ΣF = Σ′F + σ2
CI. (2.6)

By doing so, we also avoid most of the degenerate cases when all the color samples are similar.

The log likelihoods for the foreground L(F ) can then be modeled as being derived from an

oriented elliptical Gaussian distribution, using the weighted covariance matrix as follows:

L(F ) = −(F − F )
T

Σ−1
F (F − F ) / 2 . (2.7)

The definition of the log likelihood for the background L(B) depends on which matting problem

we are solving. For natural image matting, we use an analogous term to that of the foreground, set-

ting w(p) to (1−α(p))2g(p) and substituting B in place of F in every term of equations (2.4), (2.6),

and (2.7). Note that the neighborhood for collecting background samples is determined similarly

as the neighborhood for the foreground. These two neighborhoods are not necessarily the same.

For constant-color matting, we calculate the mean and covariance for the set of all pixels that are

labelled as background. For difference matting, i.e., when a clean plate is available, we have the

background color at each pixel; we therefore use the known background color as the mean and a

user-defined variance to model the noise of the background.

For now, we assume that the log likelihood for the opacity L(α) is constant (and thus omitted

from the maximization in equation (2.2)). Later, in Section 2.5, we will describe a regularization

approach to incorporate L(α).

Because of the multiplication of α with F and B in the log likelihood L(C |F, B, α), the func-

tion we are maximizing in (2.2) is not a quadratic equation in its unknowns. To solve the equation
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efficiently, we break the problem into two quadratic sub-problems. In the first sub-problem, we as-

sume that α is a constant. Under this assumption, taking the partial derivatives of (2.2) with respect

to F and B and setting them equal to 0 gives





Σ−1
F + Iα2/σ2

C Iα(1− α)/σ2
C

Iα(1− α)/σ2
C Σ−1

B + I(1− α)2/σ2
C









F

B



 =





Σ−1
F F + Cα/σ2

C

Σ−1
B B + C(1− α)/σ2

C



 , (2.8)

where I is a 3 × 3 identity matrix. Therefore, for a constant α, we can find the best parameters F

and B by solving the 6× 6 linear system (2.8).

In the second sub-problem, we assume that F and B are constant, yielding a quadratic equation

in α. We arrive at the solution to this equation by projecting the observed color C onto the line

segment BF in color space,

α =
(C −B) · (F −B)

‖F −B‖2 , (2.9)

where the numerator contains a dot product between two color difference vectors. To optimize the

overall equation (2.2) we alternate between assuming that α is fixed to solve for F and B using

equation (2.8), and assuming that F and B are fixed to solve for α using equation (2.9). To start

the optimization, we initialize α with the mean α over the neighborhood of nearby pixels and then

solve the constant-α equation (2.8).

When there is more than one foreground or background cluster, we perform the above optimiza-

tion procedure for each pair of foreground and background clusters and choose the pair with the

maximum likelihood. Note that this model, in contrast to a mixture of Gaussians model, assumes

that the observed color corresponds to exactly one pair of foreground and background distributions.

In some cases, this model is likely to be the correct model, but we can certainly conceive of cases

where mixtures of Gaussians would be desirable, say, when two foreground clusters can be near one

another spatially and thus can mix in color space. Ideally, we would like to support a true Bayesian

mixture model. In practice, even with our simple exclusive decision model, we have obtained better

results than the existing approaches.
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Figure 2.2: Summary of input images and results. Input images (top row): a blue screen mat-
ting example of a toy lion, a synthetic “natural image” of the same lion (for which the exact
solution is known), and two real natural images, (a lighthouse and a woman). Input trimap seg-
mentation (middle row): conservative foreground (white), conservative background (black), and
“unknown” (grey). The leftmost trimap was computed automatically (see text), while the rightmost
three were specified by hand. Compositing results (bottom row): the results of compositing the fore-
ground images and mattes extracted through our Bayesian matting algorithm over new background
scenes. (Lighthouse image and the background images in composite courtesy Philip Greenspun,
http://philip.greenspun.com. Woman image was obtained from Corel Knockout’s tutorial, Copy-
right c© 2001 Corel. All rights reserved.)

2.4 Results and comparisons

We tested our Bayesian approach on a variety of different input images, both for blue screen and for

natural image matting. Figure 2.2 shows four such examples. In the rest of this section, we discuss

each of these examples and provide comparisons between the results of our algorithm and those of

previous approaches.4

4For natural image matting, we compare our Bayesian algorithm with Knockout and the Ruzon-Tomasi algorithms
but not the Hillman algorithm.



25

M
is

hi
m

a’
s

m
et

ho
d

B
ay

es
ia

n
ap

pr
oa

ch
G

ro
un

d
tr

ut
h

Alpha Matte Composite Inset

Figure 2.3: Blue screen matting of lion (taken from leftmost column of Figure 2.2). Mishima’s
results in the top row suffer from “blue spill.” The middle and bottom rows show the Bayesian
result and ground truth, respectively.

2.4.1 Blue screen matting

We filmed our target object, a stuffed lion, in front of a computer monitor displaying a constant

blue field. In order to obtain a ground-truth solution, we also took radiance-corrected, high dynamic

range [30] pictures of the object in front of five additional constant-color backgrounds. The ground-

truth solution was derived from these latter five pictures by solving the overdetermined linear system

of compositing equations (1.1) using singular value decomposition.

We compare our Bayesian approach to one of the best blue screen matting algorithms, Mishima’s

algorithm. Both Mishima’s algorithm and our Bayesian approach require an estimate of the back-

ground color distribution as input. For blue screen matting, a preliminary trimap segmentation can

be performed more-or-less automatically using the Vlahos equation (1.2). Setting a1 to be a large
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number generally gives regions of pure background, while setting a1 to a small number gives re-

gions of pure foreground. The leftmost image in the middle row of Figure 2.2 shows the preliminary

segmentation produced in this way, which was used as input for both Mishima’s algorithm and our

Bayesian approach to build the foreground and background statistics.

In Figure 2.3, we compare our results with Mishima’s algorithm and with the ground-truth solu-

tion. Mishima’s algorithm exhibits obvious “blue spill” artifacts around the boundary, whereas our

Bayesian approach gives results that appear to be much closer to the ground truth.

2.4.2 Natural image matting

For natural image matting, we have implemented an integrated system for trimap editing and Bayesian

matting. For trimap editing, the user draws unknown regions with painting tools or intelligent scis-

sors [62] and selects which partition or partitions are to be flood-filled as foreground, with the

remainder flood-filled as background. After performing Bayesian matting, if there are errors in the

resulting matte, the user can directly edit the matte with alphas of 0 and 1. The edited matte is then

converted to a trimap for Bayesian matting until a satisfactory result is obtained.

Figure 2.4 provides an artificial example of “natural image matting,” one for which we have a

ground-truth solution. When taking the ground-truth solution for the previous blue screen matting

example, in addition to the constant-color backgrounds, we also filmed the stuffed lion in front of

a known checkerboard background. We then attempted to use four different approaches for pulling

the matte: a simple difference matting approach (which takes the difference of the image from the

known background, thresholds it, and then blurs the result to soften it); Knockout; the Ruzon and

Tomasi algorithm, and our Bayesian approach. The ground-truth result is repeated here for easier

visual comparison. Note the checkerboard artifacts that are visible in Knockout’s solution. The

Bayesian approach gives mattes that are somewhat softer, and closer to the ground truth, than those

of Ruzon and Tomasi.

Figure 2.5 repeats this comparison for two (real) natural images (for which no difference matting

or ground-truth solution is possible). Note the missing strands of hair in the close-up for Knock-

out’s results. The Ruzon and Tomasi result has a discontinuous hair strand on the left side of the

image, as well as a color discontinuity near the center of the inset. In the lighthouse example, both
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Alpha Matte Composite Inset

Figure 2.4: “Synthetic” natural image matting. The top row shows the results of difference image
matting and blurring on the synthetic composite image of the lion against a checkerboard (column
second from left in Figure 2.2). Clearly, difference matting does not cope well with fine strands.
The second row shows the result of applying Knockout; in this case, the interpolation algorithm
poorly estimates background colors that should be drawn from a bimodal distribution. The Ruzon-
Tomasi result in the next row is clearly better, but exhibits a significant graininess not present in the
Bayesian matting result on the next row or the ground-truth result on the bottom row.
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Figure 2.5: Natural image matting. These two sets of photographs correspond to the rightmost two
columns of Figure 2.2, and the insets show both a close-up of the alpha matte and the composite
image. For the woman’s hair, Knockout loses strands in the inset, whereas Ruzon-Tomasi exhibits
broken strands on the left and a diagonal color discontinuity on the right, which is enlarged in the
inset. Both Knockout and Ruzon-Tomasi suffer from background spill as seen in the lighthouse
inset, with Knockout practically losing the railing.

Knockout and Ruzon-Tomasi suffer from background spill. For example, Ruzon-Tomasi allows the

background to blend through the roof at the top center of the composite inset, while Knockout loses

the railing around the lighthouse almost completely. The Bayesian results exhibit none of these

artifacts.

2.5 Regularization

In Section 2.3, the Bayesian matting algorithm estimates α, F , and B for each pixel independently

without the likelihood L(α). Hence, when the foreground and background color statistics are sim-

ilar, this algorithm could lead to a poor matte with jagged edges. This is because, in these regions,

foreground and background estimates are very close in color space, and equation (2.9) becomes ill-
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conditioned. To alleviate this problem, one common solution is to impose smoothness constraints

to make the problem well-posed.

We use a Markov Random Field (MRF) approach [50] to solve the matting problem as a whole

and incorporate constraints into the solution. To simplify analysis, we assume that α is the only

hidden variable. Hence, we can write the joint probability of the MRF as

P (α, C) =
1

Z

∏

p∈Ω

Φ(α(p); p, C)
∏

(p,q)∩Ω6=φ

Ψ(α(p), α(q)) , (2.10)

where (p, q) represents a pair of neighboring pixels, Ω is the unknown region, (p, q)∩Ω 6= φ means

at least one of p and q is in the unknown region, and Z is the normalization constant. Note that, here,

α and C represent the matte and the observation image as a whole instead of the opacity value and

the color at each pixel in equation (2.2). The evidence function Φ(α′; p, C) describes the likelihood

of a particular alpha value α′ being assigned to α(p) given the observation C. The compatibility

function Ψ encodes the prior for α. Such a prior could be hypothesized or learned. The optimal alpha

matte can then be found by maximizing the above probability for the given observation C. Taking

the log of equation (2.10), we can see that finding the MAP estimate is equivalent to minimizing a

function of the following form,

L(α, C) =
∑

p∈Ω

− log Φ(α(p); p, C) +
∑

(p,q)∩Ω6=φ

− log Ψ(α(p), α(q))

=
∑

p∈Ω

EΦ(α(p); p, C) +
∑

(p,q)∩Ω6=φ

EΨ(α(p), α(q)) . (2.11)

To complete our MRF formulation for the matting problem, we have to define these two energy

functions EΦ(·) and EΨ(·).

For a pixel p, the evidence energy EΦ(α′; p, C) evaluates how likely α(p) is to take the value

α′ given the observation C. To calculate EΦ(α′; p, C), for the hypothesis α(p)=α′, we follow the

same color sampling procedure described in Section 2.3 and calculate foreground and background

color statistics {F , ΣF , B, ΣB} for the pixel p using equation (2.4) and (2.6). We then solve the

linear equation (2.8) to obtain the optimal foreground and background colors, F̂ and B̂, for the

given α′. Finally, we substitute F̂ , B̂ and α′ into equation (2.2) to get the associated energy (a sum

of negative likelihoods), and assign it to EΦ(α′; p, C).
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For the compatibility function EΨ(·), a naı̈ve choice is the quadratic function, (α(p)−α(q))2,

that ensures smoothness of the resulting matte. Note that, with this quadratic energy, computing the

second term of equation (2.11) is equivalent to computing the sum of gradients of the alpha matte

within the unknown region,
∑

p∈Ω |Oα|2. This energy, however, makes α smooth everywhere,

leading to poor results at boundaries. To preserve discontinuities, we modulate the smoothness term

by a function of the image gradient, ϕ(|OC|). We set ϕ(a)∝ 1
max(a,ε) , where ε is a small positive

number to prevent ϕ(a) from becoming infinite, to enforce smoothness on the matte in low-contrast

regions while preserving discontinuities in high-contrast regions. Finally, a global constant λ is

used to control the compromise between the evidence and the compatibility energies. Plugging in

the quadratic compatibility energy, equation (2.11) becomes

L(α, C) =
∑

p∈Ω

EΦ(α(p); p, C) + λ
∑

p∈Ω

ϕ(|OC|)|Oα|2 . (2.12)

We call this method regularization because solving the MAP setting with a prior energy of a

quadratic form is equivalent to the regularization of an ill-posed problem [50].

Now that the MRF has been formulated, to find the optimal α, we could use Belief Propaga-

tion [34] or Graph Cut algorithms [17]. However, to apply these algorithms, for a 256-level matte,

we have to solve equation (2.8) 256 times for every pixel p. This is computationally intensive.

Because the evidence energy function EΦ(·) is usually very smooth, to further simplify the compu-

tation, we instead approximate EΦ(α(p); p, C) with a quadratic function,
(

α(p)−µp

σ2
p

)2
, with center

µp and width σp. Therefore, equation (2.12) becomes

L(α, C) =
∑

p∈Ω

(

α(p)− µp

σ2
p

)2

+ λ
∑

p∈Ω

ϕ(|OC|)|Oα|2 . (2.13)

We estimate µp and σp by sampling EΦ(·) uniformly at 16 different alpha’s, and fitting a quadratic

function to the samples. Intuitively, µp represents the optimal alpha solved by the Bayesian matting

algorithm, and σp is the confidence level to the solution µp. When σp is large, the evidence energy

function is flat and the optimal α(p) could be pulled further from µp by p’s neighbors. When σp is

small, the energy function is sharp and the optimal α(p) can not be pulled too far away from µp.

Now, because the likelihood equation (2.13) becomes quadratic, we can find the optimum by solving

a linear system, Aα = b. Matrix A is very sparse with only only 13 non-zero elements per row on
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.6: Results of regularization. Given the input image (a), we applied the Bayesian matting
algorithm to pull out an alpha matte (b) for a flower and composite the flower over a gray color (e).
Because the background is highly textured, there are some artifacts in the matte and composite
such as mis-classified pixels and over-hardened edges. Such artifacts are more noticeable in the top
portions of insets (d) and (g) showing two close-ups of the alpha matte and composite, respectively,
without regularization. With regularization, we obtained a better matte (c) and composite (f). In the
bottom portions of the insets (d) and (g), most of the artifacts are eliminated with regularization.

average. Iterative methods such as the conjugate gradient method are very efficient for solving this

kind of system. Overall, this approach is much faster than solving a Belief Propagation or Graph

Cut problem. After having estimated α by optimizing equation (2.13), we estimate the foreground

and background colors by solving equation (2.8) using the estimated α.

Figure 2.6 shows the results of regularization and compares them to those of Bayesian matting.

Generally, regularization gives smoother mattes than Bayesian matting. However, regularization

can sometimes over-smooth the mattes sometimes. Hence, it is preferable for simpler, coherent

structures but could be harmful for the mattes containing complex structures such as hair.

2.6 Extensions and applications

In this section, we discuss the extensions and applications reported by others after our Bayesian

matting algorithm was published.

We have provided Industrial Light & Magic (ILM) with a copy of our Bayesian matting soft-

ware to evaluate it in an production setting. While the Bayesian matting algorithm is designed for

natural image matting, ILM has primarily been using it to estimate the foreground colors and refine

the mattes extracted from blue screen images. There are two reasons for this. First, blue screen

matting is still more widely used than natural image matting. Bayesian matting tends to outperform
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blue screen matting algorithms, because it does a better job of handling spatial color variations.

Second, the Bayesian matting algorithm does not work particularly well for the regions where the

foregrounds or backgrounds are highly textured.

Layer-based representations have many potential applications in computer graphics, and the

recent developments of natural image matting algorithms have inspired many of them. For exam-

ple, Reche et al. [73] use a natural image matting algorithm to extract alpha mattes from a small

number of calibrated photographs of a tree to allow interactive rendering of realistic 3D trees. Ya-

mazaki et al. modify natural image matting algorithms to build billboards for image-based render-

ing [116]. In addition, in Chapter 6, we present an application of Bayesian matting to animating

pictures.

Chen et al. specialize the Bayesian algorithm for solving the grayscale matting problem [19].

They also add the likelihood for α,

L(α) = −(α− α)2

σ2
α|OC| , (2.14)

where α is the average alpha of neighboring pixels and σα is a user-specified constant modeling

the noise of α. The magnitude of color gradient |OC| is used here to avoid over-smoothing alpha.

Finally, they combine grayscale image matting with color transferring techniques to perform region-

based colorization. Shum et al. exploit similar smoothness constraint for L(α) and call it coherence

matting [84]. They use this technique to construct coherent layers for an image-based rendering

system called pop-up light field.

The quality of the input trimap is critical to the success of statistical image matting algorithms.

However, specifying trimaps could be a painstaking process. Blake et al. propose an easier way to

specify trimaps based on an adaptive “Gaussian Mixture Markov Random Field” model [13]. More

recently, several methods for efficient foreground extraction have been proposed [52, 75].

One weakness of most statistical natural image matting algorithms is that they are slow. For

thousands of unknown pixels, it usually takes a couple of minutes to estimate the matte. Tan presents

a closed-form solution for a fast probabilistic matting algorithm [99]. This algorithm is reported to

obtain mattes of comparable quality to those of existing algorithms in a couple of seconds.

The most important development for natural image matting after Bayesian matting is probably

the Poisson matting algorithm proposed by Sun et al. [93]. As observed by Mitsunaga et al., the
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gradient of the matte is proportional to the gradient of the input image (equation (1.3)). Hence,

instead of using color statistics, Poisson matting directly reconstructs a matte from a continuous

matte gradient field by Poisson integration using boundary conditions specified by the input trimap.

That is, it solves for the matte α∗ that minimizes the discrepancy between its own gradient and the

image gradient,

α∗ = arg min
α

∫

p∈Ω
|Oα(p)− 1

F (p)−B(p)
OC(p)|2dp, (2.15)

in which F (p) and B(p) are estimated from the neighboring known foreground and background

colors assuming foreground and background colors are fairly smooth. Furthermore, a rich set of

filtering tools are provided to allow the user to improve the resulting matte by interactively manipu-

lating the matte gradient field. Easier control is the biggest strength of Poisson matting. Because of

the difficulty in obtaining perfect mattes, it is common practice in industry to allow the user to adjust

parameters until the results are satisfactory. However, for most natural image matting approaches,

the only way to adjust a matte is to edit the trimap. This appraoch is less intuitive and the results are

usually less predictable. By formulating the matting problem in terms of Poisson equations from

image gradient fields, Poisson matting allows the user to operate directly on the gradient fields to

adjust a matte in easier, interactive, and more intuitive ways.

Summary

In this chapter, we have developed a Bayesian approach to solving several image matting problems:

constant-color matting, difference matting, and natural image matting. Though sharing a similar

probabilistic view with Ruzon and Tomasi’s algorithm, our approach differs from theirs in a num-

ber of key aspects. It uses (1) MAP estimation in a Bayesian framework to optimize α, F and B

simultaneously, (2) oriented Gaussian covariances to better model the color distributions, (3) a slid-

ing window to construct neighborhood color distributions that include previously computed values,

and (4) a scanning order that marches inward from the known foreground and background regions.

We have also proposed a regularization approach to overcome the “jagged-matte” problem when

Bayesian matting becomes ill-posed. To sum up, our approach has an intuitive probabilistic moti-

vation, is relatively easy to implement, and compares favorably with previous approaches for matte

extraction.
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Chapter 3

VIDEO MATTING

3.1 Introduction

The Bayesian matting algorithm presented in the previous chapter is capable of pulling a matte

from a single image with an unknown background. For special effects, however, it is more common

to extract a traveling matte from a video filmed against a natural background, instead of a single

matte from an image. This scenario often occurs when new elements are inserted into complex live-

action footage. For example, in “Jurassic Park,” computer-generated dinosaurs were inserted into

real jungle environments [74]. The focus of this chapter is to move beyond the single-frame realm

and extend natural image matting algorithms to handle a sequence of images. A naı̈ve approach

would be to create a trimap by hand for each frame. In addition to being inefficient, this approach

can result in unusable mattes. Even if each individual matte looks reasonable, when displaying the

whole sequence at the proper speed, matte edges may crawl, elements may flicker, and motions may

be jerky [18] because manual frame-by-frame matting does not enforce temporal consistency.

In this chapter, we present a framework to extend our Bayesian matting algorithm to video

matting in a more automatic and temporally consistent way, enabling the extraction of high-quality

traveling mattes around complex foreground silhouettes filmed against natural backgrounds.1 While

video requires matting many frames and introduces a need for temporal coherence, it also has an

inherent data redundancy that we can utilize to facilitate the matting process. Our approach employs

computer vision algorithms to incorporate as much information from other frames as possible. In

particular, we use bi-directional optical flow to interpolate user-supplied keyframe trimaps, thus

reducing user involvement. Competing flow estimates are combined based on information about

where flow is likely to be accurate. Further, when the background can be estimated with mosaicking

1The work described in this chapter was first presented in the ACM SIGGRAPH 2002 paper co-authored with Aseem
Agarwala, Brian Curless, David H. Salesin and Richard Szeliski [20].
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techniques, we improve both the trimap and the matte by borrowing the background colors from the

nearest frame in which those colors are known to be uncontaminated by the foreground.

The remainder of the chapter is organized as follows. First, we discuss the related work on

layer extraction and the existing techniques we build upon (Section 3.2). We then present our video

matting algorithm (Section 3.3). Next, we describe a novel technique for estimating mattes for

smoke blowing across a known background (Section 3.4). Then, we show results of applying our

matting algorithm to video footage both with and without background estimation (Section 3.5).

Finally, we describe some extensions developed by others and summarize this chapter (Section 3.6).

3.2 Related work

Video matting is related to the layer extraction problem in the computer vision [103, 106] and

multimedia [37, 46] communities. Layer extraction algorithms segment images into several coherent

layers based on information such as colors and motions. Wang and Adelson pioneered representing

moving images with layers [106]. They used motion analysis to segment a sequence of images into

a set of layers. Later, Weiss and Adelson proposed an expectation maximization (EM) algorithm

to perform such segmentation automatically [111]. Most layer extraction algorithms, however, can

only generate binary masks for classifying pixels as foreground or background, instead of mattes

depicting opacity values.

More recently, Jojic and Frey use a generative-model-based approach to solve the layer extrac-

tion problem [43]. They use a flexible sprite model to represent each layer as a combination of

a sprite appearance map and a sprite mask, both modeled with pixel-by-pixel Gaussians. Using a

generalized EM and a variational inference algorithm, their method efficiently learns the best model

parameters from the sequence and automatically decomposes the sequence into layers. For videos

that can be explained by this generative model, their method outputs a reasonably good soft seg-

mentation, although it is typically still not good enough for high quality compositing. Furthermore,

this model is considerably restrictive and works best for sprites with translational motions.

Hillman et al. have extended their natural image matting approach to handle videos by inferring

a trimap for the current frame from the previous frame [40]. They match a low-resolution version

of the current frame to the previous frame and classify each pixel as foreground or background if
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the corresponding pixels are mostly of the same foreground/background class. Undecided pixels are

classified by searching for corresponding edges in the previous frame and using their foreground

and background color statistics. The resulting trimap tends to be noisy, and a morphology operation

is used in a post-processing step to clean up the trimap. Unfortunately, it is hard to gauge the quality

of their approach since only three static frames from a simple sequence are presented.

Our video matting algorithm flows keyframe trimaps using optical flow. Over the years, re-

searchers have developed a number of techniques for estimating optical flow, many of which are

compared and summarized by Barron et al. [5]. Two assumptions common to many of these tech-

niques are that the color of a source and destination pixel should be similar, and that the flow field

should exhibit some amount of spatial coherence. Thus, the problem becomes one of optimizing

a data term (color similarity) plus a regularization term (flow smoothness). One of the better-

performing optical flow techniques is due to Black and Anandan [12]. In addition to estimating

regularized flow, their technique employs robust statistics to avoid large errors caused by outliers

and to allow for discontinuities in the flow field. Their method handles large motions using a multi-

scale approach to flow estimation. In our video matting process, we have incorporated Black’s

optical flow algorithm, for which an implementation is available on the author’s webpage.

Our method uses background estimation to reconstruct clean plates to improve matting whenever

possible. Background estimation is straightforward when the camera is locked down or when it is

attached to a motion control rig that permits reproducing camera motion both with and without the

actors. In some cases, however, a partial clean plate can be assembled from nearby video frames

if the background motion can be reliably estimated from frame to frame. Such image mosaicking

techniques have been used in MPEG-4 video coding to compactly transmit a static portion of the

scene viewed from a panning camera [46]. Once a conservative foreground mask (sometimes called

a garbage matte) has been specified, through either manual [46] or automated [106] means, the

remaining background fragments can be assembled using perspective image mappings to form a

composite mosaic [97], which can then be reprojected into each original frame to form a dynamic

clean plate. While these previous approaches have been successfully applied in image coding and

surveillance, they have not been used to obtain pixel-accurate alpha mattes.
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3.3 Video matting

Our approach to video matting combines these earlier techniques with a modest amount of user

interaction, which consists of garbage matte specification if background estimation is needed, and

hand-drawn keyframe trimaps. Figure 3.1 illustrates the flow of user interaction, data, and compu-

tation, which we summarize here.

Where possible, a background plate B can appreciably improve the quality of the mattes ob-

tained. To aid this process, the user draws a set of garbage mattes G that conservatively eliminate the

foreground and enable background estimation. Next, the user draws trimaps at selected keyframes

using the system described in Section 2.4.2. These keyframe trimaps K can be fairly crude, as

shown in Figure 3.3, and thus can be drawn quickly. The choice of keyframes is something the user

adapts to with experience; for example, keyframes are helpful in areas where the topology of the

foreground layer changes.

Once the initial set of trimaps is specified, the labelings are passed through the volume using

optical flow, resulting in trimaps T at every frame. The flow of information considers where optical

flow is likely to succeed and where it might fail. In order to narrow the bands of uncertainty in

the trimaps as they flow through the volume, they are converted to alpha mattes α by the Bayesian

matting process at each step of the process and then converted back into trimaps. If background in-

formation is available, the flow process can be improved using better alpha mattes (and thus trimaps)

and by using a form of difference matting that improves the trimaps in regions where flow fails.

Finally, if the matte is not satisfactory, the user can select a frame and edit the trimap with the

trimap editing tool. In practice, we provide an image of the alpha matte to edit, as this tends to

expose the structure of the image more than the trimap, but we permit the user to paint alphas of

only 0 or 1. The edited alpha matte is then converted to a trimap and becomes a new keyframe. We

then re-run the trimap interpolation method to make maximum use of the new information.

The output of the system is the estimated foreground F , estimated background B̂, and alpha α

for every frame. Note that even when the background is available, the estimated background color

may be slightly different in order to satisfy the maximum-likelihood criterion in Bayesian matting.

In the remainder of this section, we discuss in greater detail the fundamental computational

blocks: background estimation, trimap interpolation, and alpha estimation.
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Figure 3.1: Video matting flow chart. The primary computational blocks of our process are the
background estimation, trimap interpolation, and Bayesian matting components. Each block re-
ceives the original image sequence C as input. For background estimation, the user also provides a
garbage matte G to remove the foreground; then, a background B is estimated and used in trimap
flow and matting. To obtain a video matte, the user provides keyframe trimaps K, which are then
converted to alpha mattes α and passed to the trimap interpolator. The interpolated trimaps T are
refined through alpha matting at each step. Once the trimaps are complete, the Bayesian matting
algorithm generates an estimated foreground F , background B̂, and alpha matte α for all frames.

3.3.1 Background estimation

Before beginning background estimation, a garbage matte is necessary to mask out, in a conservative

manner, all pixels that could possibly contain foreground contributions. While automatic methods

have been published for estimating a garbage matte, and indeed we have tried using the keyframe

trimaps to assist in this process, they do not always work. Making errors in the background plate

can seriously degrade the quality of the alpha matte. Thus, we follow the approach commonly used

in the film industry: we require the user to provide the garbage mattes. For our system, the user

must draw a rectangle at a handful of keyframes. These rectangles are automatically interpolated

over all the frames and can then be adjusted immediately by the user to obtain conservative garbage

mattes. For a sequence of 100 frames, it took about 5 minutes to specify garbage mattes.

Given the garbage mattes, we use the mosaicking method of Szeliski and Shum [97] to com-

pute frame-to-frame registration. This method works under the assumption that the background

undergoes only planar-perspective transformation. This assumption is equivalent to requiring that
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the background be planar or, less restrictively, that the camera’s optical center translate a negligi-

ble amount relative to the distance to the background between frames being registered. Instead of

constructing a single clean plate, we fill in the missing parts of each frame with the color from the

temporally nearest frame that contains a background color for that pixel. In practice, we find that

copying pixels from nearby keyframes has the advantage of reducing errors due to small amounts of

parallax or gradual temporal variations that may arise with illumination changes, motion blur, and

defocus.

3.3.2 Trimap interpolation

To pull a complete video matte, we require a trimap for each frame. Constructing the trimaps

manually is tedious and time-consuming; on the other hand, a fully automatic approach is unlikely

to succeed in giving high-fidelity mattes. Thus, we have developed a semi-automatic system that

calculates trimaps for every frame using hand-drawn trimaps for selected keyframes.

To take advantage of spatiotemporal coherence within the video volume, we employ optical

flow. Optical flow provides an estimate of inter-frame motion at each pixel in a video sequence.

Given two neighboring frames, Ct and Ct+1, we can think of each pixel p in Ct+1 as coming from

a shifted location p+u(p) in Ct,

Ct+1(p) = Ct(p + u(p)) , (3.1)

where u(p) describes the velocity of the pixel and is itself a spatially varying function over the

image. We refer to u as the flow field between two frames. The flow field acts as a guide for passing

trimap labelings through the volume between keyframes. In principle, we could simply start from

the first keyframe and flow its trimap forward in time. However, consider disocclusions in an image

sequence, i.e., when a feature not present in one frame appears in the next frame. Optical flow

breaks down here because it cannot find source pixels that explain the new feature. On the other

hand, if we view this same event when running through the frames in the reverse direction, the event

becomes an occlusion, and optical flow does not have a problem.2 This tells us that disocclusions

will cause errors in flow that can frequently be resolved by viewing flow in the opposite direction.

2This insight has also been noted and used in the image coding literature [95]
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The solution is clear: run flow in both directions — forward from one keyframe and backward from

the next — and combine the observations according to a measure of per-pixel accuracy for each

prospective flow.

In the following sections we describe how we measure the accuracy of optical flow and then

present our algorithm for running and combining bi-directional flow.

Accuracy of optical flow

In this section, we devise a method for determining the accuracy of optical flow. This accuracy test

is built on precomputed error maps, i.e., the per-pixel prediction errors from one frame to another.

To create a forward error map εf
t for a flow from frame t− 1 to t, we first compute the image

predicted by flow, Ct(p − u(p)), bilinearly resampled onto the pixel grid. At each pixel of this

warped image, we can compute the difference between the predicted color and the observed color

as the L2 distance between the pixels in rgb color space, εf
t = ‖Ct(p)−Ct(p−u(p))‖. A similarly

computed backward error map εb
t measures the accuracy of the flow from frame t+1 to t.

After computing error maps for each frame in both directions of optical flow, we combine these

to create two sets of accumulated error maps. Since we are propagating trimap values from the

nearest keyframes, it is not enough to know the error for single frames of optical flow. Instead,

we need the accumulated error in optical flow in both directions from the nearest keyframes. If

frame t is a keyframe, the forward accumulated error map ξf
t+1 is simply set to εf

t+1. To compute

ξf
t+2, we first warp the values of ξf

t+1 forward in time using the calculated flow. Then, we set ξf
t+2

equal to this warped accumulated error map plus εf
t+2. This set of calculations is performed from

each keyframe forward until the following keyframe is reached. The backward accumulated error

maps ξb
t are computed similarly. Thus, at a frame t′, the accumulated error maps ξf

t′ and ξb
t′ give us a

measure at each pixel of the accuracy of flow estimation from the previous and following keyframes.

Combining forward and backward flow

Once optical flow and the error maps have been calculated, we flow the trimaps forward in time

from the hand-drawn keyframes. That is, a trimap is formed at frame t+1 by warping the keyframe

trimap t using the calculated forward flow vectors. We add an additional validity bit for each pixel



42

p of the flowed trimaps that indicates whether the calculated trimap value is trusted; this validity

bit υt(p) is set to 0 if εf
t (p) is greater than a certain threshold (experimentally set to 30). When

calculating trimap t+2 from trimap t+1, the validity bits are also warped forward and combined

conjunctively. To perform forward warping on the validity bits, they are first converted into real

numbers. If the real-value forward warped version of the validity map υt+1 to frame t+2 is υ′t+1,

the validity bit at p in trimap t+2 is conservatively set to (υ′t+1(p) = 1.0) ∧ (εf
t+2(p) < 30).

After calculating each warped trimap, we improve it by performing Bayesian alpha estimation.

Untrusted pixels whose validity bits are 0 are labelled as “unknown”: we are not confident of the

labelling of these pixels and do not want them corrupting the color distributions. The result of the

alpha estimation is thresholded (within 10 gray levels of “definitely foreground” or “definitely back-

ground”) and used to improve the trimap. If alpha estimation confirms the labelling of an untrusted

pixel, the validity bit is set to 1. If a pixel labelled as “unknown” is identified as “foreground” or

“background”, the label is changed accordingly.

In the second pass, we start from each keyframe and flow backwards in time. Now, however,

we must combine the trimap prediction in the forward direction with the trimap prediction in the

backward direction. This is made simple by the accumulated error maps that we calculated earlier.

First, the backward trimap prediction for frame t is calculated using a technique symmetric to the

forward trimap calculation. Then, at each pixel, we use the lesser of ξf
t and ξb

t to select a trimap

value. In practice, we add an additional penalty term to this comparison; if the forward trimap label

is “unknown” we add a penalty of 50 to ξf
t , and likewise for the backward trimap. We add this

additional penalty for “unknown” pixels because they are near depth discontinuities and should be

trusted less; in particular, optical flow tends to perform poorly at the boundaries between foreground

and background layers that have distinct motions, yet are blended together. Although Black’s al-

gorithm does allow for discontinuities in the flow field, we have found that this allowance does not

always work, particularly for complex silhouettes.

If a background plate is available, it is useful to incorporate this information when flow is invalid

from both directions. In the event that the forward and backward validity bits are both 0, we can

resort to a simple form of difference matting. In particular, we compute the rgb L2 distance between

the observed color and the background color and apply user defined thresholds to map the distance

to a trimap value.
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Finally, during the second pass each computed trimap is passed through alpha estimation, and

the results are used to improve the trimap as described earlier.

3.3.3 Bayesian matting with background

When the background is not available, we run the matting algorithm on the video frames and trimaps

exactly as described in Chapter 2. When available, however, the estimated background offers three

distinct advantages. First, the distribution of the background is tighter and more accurate. (However,

due to sensor noise, the background color is still not a point in color space, but is modeled by a

Gaussian distribution with a small standard deviation centered at the estimated color.) Figure 3.3

shows that the extracted alpha matte is much improved with the help of the clean plate. Second,

we no longer need to compute background statistics by sampling neighborhoods and computing

means and covariances, thus speeding up the matting process. Finally, the neighborhood windows

no longer have to be large enough to span the unknown region and include pixels in the known

background region. These last two factors yield a factor of 10 speedup in the matting process.

3.4 Smoke matting

We have also developed a simple extension for extracting mattes of flowing, participating media,

such as smoke, given a known background. The example in Figure 3.4 illustrates the “smoke mat-

ting” process for a smoking actor. First, applying the video matting technique described in the

previous section to just the actor, we pull his matte and remove him from the scene (Figure 3.4(b)).

We then compute the difference between the matted-out image and the background image (Fig-

ure 3.4(c)), and all pixels whose differences are among the largest 5% are selected for estimating

foreground statistics.

The challenge of applying Bayesian matting to extracting smoke is that there is no opaque region

of smoke from which we can build a prior probability for foreground color. By treating the color of

the smoke as a constant value that is simply composited with a varying alpha over the background,

we need only discover that foreground color in order to estimate the matte. For each selected pixel

pi, if it has been mixed with smoke, we expect its color Ci to lie somewhere along a line `i in rgb

color space between the pixel’s known background color Bi and the foreground smoke color F . By
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taking all of the selected pixels, we can construct a set of these lines that, barring degenerate con-

figurations, will roughly intersect at the foreground smoke color (Figure 3.4(d)). Thus, we compute

an estimate of the foreground color F as the least-square nearest intersection of all the lines.

To find the least-square intersection, we first express each line `i in a parametric form, Bi+tUi,

where Ui =(Ci−Bi)/‖Ci−Bi‖ is the normalized direction vector of the line `i. Then, we seek the

point F that minimizes the cost function Λ(F ; `i), the sum of the squares of the distance of a point

F to the lines `i; that is,

F = arg min
F

Λ(F ; `i) , (3.2)

Λ(F ; `i) =
∑

i

‖F −Bi‖2 − [(F −Bi) · Ui]
2 . (3.3)

At the optimum, the derivative of equation (3.3) with respect to F is equal to zero, which leads to

the solution

F =

[

∑

i

(UiU
T
i − I)

]−1
∑

i

[

(UiU
T
i − I)Bi

]

. (3.4)

After finding the estimate of the foreground color F , we project F onto each of the original lines

`i to obtain the projections Fi = Bi + [(F −Bi) ·Ui]Ui. It can be proved that F equals the average

of these projections Fi. Thus, a covariance matrix ΣF can be calculated by

ΣF =
∑

i

(Fi − F )(Fi − F )T . (3.5)

To be more robust, the contribution of each line `i can be weighted by ‖Ci − Bi‖ in the above

calculations for F and ΣF , but we did not find this necessary in practice. The calculated variance

ΣF along with F form a Gaussian function used by Bayesian matting as the foreground distribution.

The smoke matte is then calculated at every pixel in the image without the actor, and then the actor

and smoke mattes are combined (Figure 3.4(e)).

Although the result looks realistic, a more principled approach would be to formulate the whole

problem as a Bayesian framework that includes variances for Ci and Bi, and optimizes for all the

variables simultaneously:

arg max
F,αi,Ci,Bi

P (F, αi, Ci, Bi)

= arg max
F,αi,Ci,Bi

L(αi|F, Ci, Bi)L(F |Ci, Bi)L(Ci)L(Bi), (3.6)
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frame 27 frame 28 frame 29 composite 28

trimap27→28 trimap28 trimap28←29 alpha 28

Figure 3.2: Combination of bi-directional flow. For frames 27, 28, and 29 (shown above) and
the current trimaps for frames 27 and 29 (neither shown), we estimate the trimap for frame 28.
Flowing the trimap in the forward direction (27→ 28) yields a trimap with extra uncertainty due to
disocclusion as the actor’s face turns to the right. The trimap predicted by flowing backward (28←
29) has less uncertainty in those regions, but suffers from disocclusions where the background is
newly exposed. By combining the information in both these trimaps, we can compute trimap 28
automatically, which is better than either one alone. The right column shows a composite into a new
scene (top) using the pulled matte (bottom) based on the combined trimap.

where L(Ci) and L(Bi) model errors in the measurements of Ci and Bi respectively, L(F |Ci, Bi) is

the sum of squared distances defined in equation (3.3), and L(αi|F, Ci, Bi) can be similarly defined

as equation (2.3). However, this approach would involve many more unknowns and the optimization

would be much more complex. Instead, we have taken a simpler approach and found that it works

well in practice.

3.5 Results

We have applied our video matting algorithm to a number of video sequences. In this section, we

present stills for several instructive examples.



46

(a) (b) (c) (d)

Figure 3.3: Background estimation in Bayesian matting. On the far left are the keyframe trimap
and estimated background for a single frame. Using the original image (a) and the trimap without
the background, Bayesian matting pulls a matte with errors, as shown in a composite over blue (b).
Including the background but using instead the method of Ruzon and Tomasi gives an improved
result (c), but flaws in the matte are still visible. Applying the Bayesian matting with background
results in a higher-quality matte and composite (d).

Figure 3.2 demonstrates the importance of using bi-directional optical flow for computing in-

terpolated trimaps. For this example, no background estimation is performed. In flowing from

keyframe 27 to 28, a disocclusion of the foreground occurs, causing errors in the optical flow, which

lead to “unknown” labels in these regions. Flowing from 29 to 28 solves this problem, but intro-

duces some disocclusion in the background. Combining the two flows using the forward/backward

sweep described in Section 3.3.2 gives a more accurate trimap and a better matte and composite.

Figure 3.3 illustrates the utility of background estimation. After the user provides the garbage

matte, a background sequence is constructed. The keyframe trimap, combined with the input image,

can be used to create a matte using the Bayesian method even without the background, but the matte

contains a number of errors, as shown in the composite over blue. When including the background,

but using the method of Ruzon and Tomasi, the matte also exhibits artifacts. In fact, when playing

this result back as a video, temporal flashing artifacts arise, which are likely due to the static neigh-

borhoods assembled independently for each frame. Finally, using the Bayesian method combined

with the background yields a matte that, while not perfect, is free of many of the artifacts of the

other two methods, and composites well over novel backgrounds.

Figure 3.4 shows a result of smoke matting and illustrates a composite over an edited back-

ground. In this case, we acquired the original background by locking down the camera and filming

in the absence of the actor. Note that while the resulting matte is not perfect around the silhouette
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Figure 3.4: Smoke matting. The input image (a) is part of a sequence for which keyframe trimaps
and trimap flow have been computed, and for which a background plate (c) is available. Using the al-
pha matte as a garbage matte, the foreground actor is removed (b). After applying the participating-
media matting algorithm described in Section 3.4, we obtain a matte for the smoke, which is com-
bined with the actor’s matte to yield a complete matte (e). We can then composite the foreground
over an edited version of the background as shown here (f).

of the actor, for the purposes of background editing in a particular region, the matte is good enough.

If more edits were required, the user could focus them only in the regions that would be composited

over the background edits.

Figure 3.5 and 3.6 give more examples for background editing. For the example in Figure 3.5(a),

we first used the method described in Section 3.3.1 to estimate the part of the background (Fig-

ure 3.5(b)) that is occluded by the foreground actor. Using Bayesian image matting, the dinosaur on

the left side of the background plate is extracted, and a reflected copy is inserted to the right (Fig-

ure 3.5(c)). The extracted foreground actor is then composited back onto the edited background to

finish the composite (Figure 3.5(d)). We also show an application of matting for non-photorealistic

rendering (NPR). In Figure 3.5(e), a non-photorealistic filter is applied to the whole image; note
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(a) Input frame (b) Estimated background

(c) Edited background (d) Composite

(e) NPR rendering without matting (f) NPR rendering with matting

Figure 3.5: Background editing. For an input frame (a) from a sequence, the clean plate (b) is first
estimated using the method described in Section 3.3.1. The dinosaur in the left side of the clean
plate is extracted using Bayesian matting and a mirrored copy is added to the right to obtain the
edited background (c). We then composite the foreground back into the edited background as shown
here (d). When applying NPR filters on the whole image, the result (e) does not respect foreground
boundaries and strokes are spread across the boundaries. With the help of matting, there are no such
artifacts in the composite (f). (Universal Studios and Amblin Entertainment hold the copyright on
the image from “Jurassic Park” shown here, and have granted non-exclusive permission for its use.)
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(a) Input frame (b) Composite

Figure 3.6: Background editing. For the input image (a) from a given sequence, we obtain the
composite (b) by adding a sign on the background and compositing the actor onto the edited back-
ground. (Universal Studios and Amblin Entertainment hold the copyright on the image from “For
Love of the Game” shown here, and have granted non-exclusive permission for its use.)

that the strokes are spread across the boundary of the foreground element. Instead, we can extract

the foreground element using our video matting algorithm, apply non-photorealistic filters to the

foreground element and the background plate separately, and combine the filtered versions together.

There are no spreading artifacts in the composite (Figure 3.5(f)) with the help of matting. Figure 3.6

shows another background editing example in which we add a sign to the background.

Both the execution time and the amount of user interaction depend heavily on the nature and

resolution of the sequence. Overall, our system can be divided into an unsupervised pre-processing

phase and an online phase. For the 640x480 Kim sequence (Figure 3.3), pre-processing took about

80 seconds per frame; the calculation of optical flow was by far the largest component of this time.

For the online phase, drawing a keyframe trimap for this sequence took about 2 minutes per trimap.

Interpolating these trimaps took 12 seconds per frame, with alpha estimation as the bottleneck.

The interpolation process is unsupervised, and the user can draw more keyframes in parallel. As

mentioned in Section 3.3, the user can then hand-edit any errors to form additional keyframes; this

is quick and requires only a couple minutes for the entire sequence.

All of our algorithms scale linearly with the number of pixels (resolution), but other factors such

as the area of unknown regions in the trimaps also affect running time. Choosing the frequency

of keyframes also depends on the sequence. Complicated geometry such as wispy hair generally

requires a keyframe every 10 frames. Sequences of simpler geometry require keyframes every 20–
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Table 3.1: Details for the five test sequences for video matting.

sequence frames initial keys edited keys frames/sec

Amira (Fig 3.2) 91 10 2 15

Kim (Fig 3.3) 101 11 4 15

Smoke (Fig 3.4) 176 10 1 15

Jurassic (Fig 3.5) 96 11 1 30

Baseball (Fig 3.6) 161 12 3 30

30 frames. Care should be taken to add keyframes when objects enter or leave the field of view. The

number of keyframes required for each sequence, along with the number of additional hand-edited

keyframes after the first pass of the algorithm, are given in Table 3.1.

3.6 Extensions

In this section, we discuss two extensions that solve the video matting problem with less user input

by adding more observations and priors on alpha mattes. Wexler et al. assume that motions of

both foreground and background layers can be modeled by planar-projective transformations [112].

The basic idea is to register all frames to a reference view by stabilizing the foreground element,

essentially having the background sweep past behind the fixed foreground. They also assume that

the background for each frame is known by estimating the background in a similar way to the

method described in Section 3.3.1. Therefore, for each pixel p, we have four unknowns for α and

F , with 3n equations for a sequence of n images. Even though the problem appears to be over-

constrained, it can still become ill-posed if the foreground pixel moves over a uniform background

section. Therefore, three kinds of constraints are used to regularize the solution: bounded constraints

(0≤α≤1 and 0≤F ≤1), spatial consistency (essentially the smoothness prior in Section 2.5) and

probability distribution of alpha values. For the last constraint, they observe the typical distribution

of alpha values and encourage the solved alpha matte to exhibit a similar distribution. Although this

algorithm requires very little user input, the assumptions about rigid and planar foreground motions

are quite restrictive.

Apostoloff and Fitzgibbon solve the video matting problem with a Bayesian framework [3].
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They also assume that the background is known. Hence, they essentially solve for

arg max
F,α

L(C, B |F, α) + L(F ) + L(α) . (3.7)

Their definitions for L(C, B |F, α) and L(F ) are similar to ours (Section 2.3). For L(α), simi-

lar to Wexler et al., they encode three constraints: spatiotemporal consistency (a smoothness con-

straint for a space-time volume of the video), a probability distribution over alpha values (similar

to Wexler et al.), and learned spatiotemporal consistency. For the last constraint, they use a library

of ground-truth sequences to build a joint distribution P (OC, Oα) that encodes the tight correlation

between OC and Oα. Inspired by the statistics of derivatives of natural images, they fit the col-

lected histogram of P (OC, Oα) with a mixture of a t-distribution and a Gaussian. In addition, they

use difference matting to automatically generate coarse trimaps. Although this approach solves the

video matting problem in an automatic way, because the difference matting does not always work

well, there could be holes in the resulting mattes even though spatiotemporal consistency helps fill

some of them. In addition, the extracted mattes tend to be too smooth, making this approach less

preferable for pulling mattes of complex silhouettes.

Summary

In this chapter, we extended the Bayesian matting algorithm introduced in the previous chapter

to handle videos. Our framework pulls together pieces of existing research and combines their

strengths while working around their weaknesses. The result is a new kind of rotoscoping approach.

With a modest amount of user interaction, our framework enables detailed matte extraction for actors

with complex silhouettes filmed against natural backgrounds. In addition, we have introduced a

simple procedure for extracting mattes of participating media filmed against a known background.
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Chapter 4

SHADOW MATTING AND COMPOSITING

4.1 Introduction

The matting algorithms in the previous two chapters are based on the traditional compositing equa-

tion. Although traditional compositing is effective in modeling partial coverage and transparency,

as explained in Section 1.3, it fails to correctly capture some lighting phenomena, such as shadows.

However, shadows provide important visual cues for depth, shape, contact, movement, and lighting

in our perception of the world [68], and thus are often essential in the construction of convincing

composites. Shadow elements for compositing are typically created either by hand or by extracting

them from blue screen plates.

The manual approach is commonly called faux shadow in the film industry [115]. For this

technique, artists use the foreground object’s own alpha matte to create its shadow. By warping or

displacement-mapping the shadow, it can be made to drape over simple objects in the background

plate. However, this approach has several limitations. First, an alpha matte is a flat projection of the

object from the point of view of the camera that filmed it. If the view from the light is too far from

the camera’s point of view, the silhouette of the alpha matte may be noticeably different from the sil-

houette of the correct shadow, and the resulting synthetic shadow will be unconvincing. Second, the

shadow color characteristics are manually adjusted by the compositor and do not necessarily match

the shadow characteristics of the real scene. Most importantly, this approach becomes unwieldy for

casting shadows on backgrounds with highly complex geometry. Figure 4.1(c) shows such artifacts.

The second main approach is to extract shadows from the foreground plates using luma keying

or blue screen matting. These techniques provide a better approximation to the correct shadow

characteristics. However, depending on the compositing model used, it may be difficult to obtain

photometrically realistic results. For example, in Figure 4.1(d), note that the blue screen composite

gives a noisy shadow with the wrong density, and it creates a double shadow where the ground plane



54

was already in shadow.

Regardless of the shadow extraction method, target background scenes with complex geometry

present special compositing challenges. In many cases, a rough model must be built so the actors

cast shadows onto the model as they would onto the target scene. This model may be a physical

blue screen model onto which the actor casts his real shadow for extraction, or a computer-generated

virtual model onto which faux shadows are cast using a renderer. In either case, it is often difficult

to construct a model that matches the target object exactly, so additional manual warping and roto-

scoping is required to align the transferred shadows to the receiving geometry.

In this chapter, we introduce a new process for shadow matting and compositing that captures

all of these effects realistically.1 We develop a physically-motivated shadow compositing equation,

and design a matting and compositing process based on this equation. For shadow matting, we

extract a shadow density map to describe the degree to which each pixel is in shadow. In contrast to

previous approaches, our matting method works for natural backgrounds. For shadow compositing,

we use an active illumination approach to extract an illumination map and a displacement map for

the destination scene. These maps describe the shadow appearance and distortions over the novel

target background. We recover the displacement map without requiring the calibration of the camera

or the position of the light source, using an arbitrarily textured planar reference region. Using

these acquired maps, we can realistically transfer shadows from one scene to another. Our method

imposes certain restrictions on the lighting, camera placement, and at least some of the geometry

in the source and target scenes, which we discuss when evaluating the merits and limitations of our

method.

Figure 4.1 shows an overview of our approach and compares our results to faux shadow, to blue

screen matting and compositing, and to ground truth. Our method correctly occludes both diffuse

illumination and specular highlights, retains soft shadow edges, warps shadows convincingly across

arbitrary background geometry, and seamlessly blends newly introduced shadows with those already

present in the background plate.

In the following sections, we first discuss related work (Section 4.2). We then develop our

shadow matting equation and shadow matting algorithm for scenes with identical source and desti-

1This chapter describes joint work with Dan B Goldman, Brian Curless, David H. Salesin and Richard Szeliski, first
presented in ACM SIGGRAPH 2003 [22].
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(a) Foreground scene (b) Background scene (c) Faux shadow

(d) Blue screen composite (e) Our method (f) Reference photograph

Figure 4.1: Sample result from our matting and compositing algorithm for shadows. Given a fore-
ground element photographed against a natural background (a), we seek to matte the element and
its shadow and then composite it over another background (b). The result of faux shadow (c) ex-
hibits noticeable artifacts because the view from the light is too far from the camera’s point of view.
In addition, the shadow color characteristics are assigned in an ad hoc way and the shadow does
not conform to the geometry of the background for compositing. Using a blue screen (not shown)
to extract the shadow, followed by conventional matting and compositing, we obtain a result (d)
with double darkening of the existing shadow and without proper warping of the cast shadow. The
results of our new shadow matting and compositing method (e) compare favorably with an actual
photograph (f). Note the correct dimming of the specular highlight, the convincing geometric de-
formation, and the seamless matte edges where the foreground and background shadows meet.
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nation background geometry (Section 4.3). We describe shadow compositing onto simple (planar)

destination backgrounds (Section 4.4) and shadow warping for more geometrically complex back-

grounds (Section 4.5). Then, we present results using our technique (Section 4.6). Finally, we

discuss the limitations, working range, and pros and cons of our approach (Section 4.7).

4.2 Related work

Much research has been done on shadows in both the vision and graphics communities. For ex-

ample, Finlayson et al. [32] have attempted to remove shadows from a single image, and Pellacini

et al. [66] implemented a user interface for adjusting shadow placement using direct manipulation.

However, none of this research deals directly with shadow matting and compositing.

The intrinsic image approach [110] attempts to decompose a video of an object under differ-

ent illumination conditions into a reflectance map and a sequence of light maps. These light maps

could be used as shadow mattes, though Weiss does not attempt to transfer them to other scenes.

Matsushita et al. [57] attempt to morph shadows for different lighting conditions using Weiss’s ap-

proach. They capture the lightfield of a static scene with several light sources. With multiple cam-

eras, they recover a view-dependent model using multiview stereo. A shadow mask is obtained by

simply thresholding the illumination maps. Finally, the shadow for a novel light source is obtained

by warping the shadow masks of neighboring samples and the estimated geometry.

Petrovic et al. [68] also estimate 3D geometry for casting shadows, but with different goals and

methods. Their method is intended to create shadow mattes for cel animation, so their estimates of

3D geometry can be somewhat more approximate. They create a 3D model for the scene by inflating

the character and estimating simple geometry for the background from user gestures.

Researchers have developed a number of shape-from-shadow techniques. For example, Savarese

and collaborators [78] observe the self-shadowing of an object under different lighting conditions

and carve a model to generate a plausible solution to match those observations. Our method builds

on the shadow scanning approach of Bouguet and Perona [16]. However, we avoid explicitly recon-

structing a 3D geometric model, which requires calibration of the camera and light sources. Instead,

we estimate the displacement map in the image space directly.

Our compositing method is similar to Debevec’s differential rendering approach for composit-
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ing synthetic objects into real scenes [27]. Debevec records the differences between the rendered

radiances with and without the synthetic objects in the scene. The differences are then added to the

real destination background to make the composite. To avoid explicitly modeling the geometry and

BRDF of the destination scene, we take a different approach.

4.3 Shadow matting

In this section, we develop our shadow compositing equation and describe our algorithm to estimate

shadow mattes.

As mentioned in Section 1.3, the compositing equation (1.1) mainly describes how colors should

be blended between foreground and background due to partial coverage, transparency, or motion

blur. Some of the previous approaches for shadow matting assume this model and try to determine

α and F for the shadow [115]. This approach effectively represents the shadow as a translucent dark

layer. However, the standard compositing model does not hold for shadows because shadows are

caused by the occlusion of light sources rather than color blending.

4.3.1 The shadow compositing equation

To determine an appropriate model for shadow compositing, we treat the problem within a simplified

lighting framework. In particular, we assume that a single, primary point light source (sometimes

called a key light) is responsible for dominant cast shadows within a scene. The remaining, sec-

ondary lighting is either dim or of such wide area (as in sky illumination) that its cast shadows are

comparatively negligible. If we further assume no interreflections, we can model the observed color

C at a pixel as

C = S + βI , (4.1)

where S is the shadowed color, I is the reflected contribution of the primary light source, and β is

the visibility to that light source. Let L be the color of a pixel when not in shadow. Substituting

I = L− S into equation (4.1) and rearranging, we obtain the shadow compositing equation,

C = βL + (1− β)S . (4.2)
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Equation (4.2) can be thought of in terms of images or layers. In this case, S is the shadow image,

L is the lit image, and β is the shadow density matte (or just shadow matte) representing the per-

pixel visibility of the light source casting the shadow. Note that β may be fractional. Such values

represent the same phenomena as fractional α values, including motion blur and partial coverage.

Fractional β also allows us to simulate penumbral effects. (However, for non-point light sources,

our model is only an approximation. This limitation is discussed in more depth in Section 4.7.)

The lit and shadow images L and S depend on the lighting conditions and albedos of the source

scene. Hence, they are not directly transferable from scene to scene, unlike the shadow matte β,

which is what we estimate during the matting process. For compositing, we therefore require two

new images: the lit and shadow images, L′ and S′, of the new (destination) scene (Section 4.4).

4.3.2 Estimating the shadow matte

During the matting process, given the observed color C, we need to recover the shadow matte β.

We therefore first need to estimate the shadow image S and the lit image L. We assume the image

sequence is taken from a static camera with a static background. We can estimate the lit image

and the shadow image using max and min compositing [96], i.e., finding the darkest and brightest

value at each pixel. As with smoke matting (Section 3.4), we first use the video matting algorithm

in Section 3.3 to extract the mattes of the foreground objects and exclude them from the max/min

compositing. For each pixel, we then compute

S = min
f

Cf and L = max
f

Cf , (4.3)

where the min and max are computed across all frames f independently at each pixel. Given the

color images C, L, and S, which can be thought of as 3-vectors at each pixel, we estimate the

shadow matte β using

β =
(C − S) · (L− S)

‖L− S‖2
. (4.4)

This equation simply projects the observed color C onto the color line between L and S and com-

putes the parametric distance of the projection along that line. (It is also the least squares estimate

of β given a noisy color sample C.)
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The method works quite well where we have good estimates for both L and S. However, the β

estimates are noisy where L and S are similar. This happens wherever some part of the background

is never covered by the shadow or always lies in shadow. Where L = S we cannot recover β at

all, but this signifies that the pixel is completely unaffected by the presence of shadow, so we mark

these pixels as unknown β. Small areas with unknown β can be filled in using inpainting [9] or

other hole-filling approaches, although such hole-filling was not necessary for the examples in this

dissertation. Figure 4.3 illustrates the min and max composite and recovered β for a sample input.

Note that our shadow compositing equation is derived in radiance space. In practice, we used the

gamma-corrected pixel values directly but did not observe any visible artifacts.

4.4 Shadow compositing

To perform shadow compositing, we require the lit and shadow images L′ and S′ corresponding to

the novel background scene. We assume that the novel background is captured with a static camera

whose relation to the primary light source is the same as it was in the source scene. As explained

in Section 1.3, such an assumption is commonly used for compositing to avoid difficult view inter-

polation and relighting operations. Equation (4.2) can then be used to calculate the composite color

due to shadowing as a function of these two images as

C ′ = βL′ + (1− β)S ′ . (4.5)

For a synthetic scene, it is easy to render both the lit and the shadowed versions of the scene.

For a natural scene, we perform photometric shadow scanning by moving an object between the

light and scene such that every part of the scene that we wish to composite shadows into is in

shadow at some time. As in the shadow matting process previously described, we then use max/min

compositing operations to recover the shadow and lit images corresponding to the scene.

With the recovered photometric parameters and source shadow matte β, we use the shadow

compositing equation to make the composite as shown in Figure 4.4(a–c). The most noticeable flaw

in this image is that the cast shadow does not conform to the geometry of the destination background

scene as it should. We address this shortcoming in the following section.



60

4.5 Estimating shadow deformations

In this section, we show how to transfer a shadow cast on a source planar surface onto a target

background with arbitrary geometry, assuming that some region of the target background has a

planar region matching the source planar surface. To accomplish this, we construct a displacement

or warping map w that places each pixel p in the target image in correspondence with some point

w[p] in the source image. Such a displacement map is sufficient because shadows cast from point

light sources can be described using a 2D map and projection matrix, and the projected image of

this map onto any geometry is some distortion of the map.

We use the same shadow compositing equation (4.5) but with a warped β ′ = β[w[p]]. Since

the values of the displacement map w[p] are not constrained to integer image coordinates, we use

bilinear interpolation when resampling the shadow map β.

Our method for estimating the shadow displacement map is based on Bouguet’s shadow scan-

ning approach [16]. Shadow scanning is an active illumination method, and as such its reconstruc-

tions contain gaps wherever surfaces are occluded from the view of either the light source or camera.

Fortunately, in the context of shadow compositing, these gaps coincide exactly with regions of the

image unaffected by shadows and with regions not visible to the camera. Therefore, shadow scan-

ning is ideally suited for our application. Furthermore, we can avoid Bouguet’s calibration of the

camera and light source by not doing full 3D reconstruction. Instead, we perform multiple passes

with different scan orientations in order to compute a 2D shadow warping function. We call this pro-

cess geometric shadow scanning to distinguish it from the photometric shadow scanning described

in the previous section, which recovers no geometric (deformation) properties of the scene.

As in Bouguet’s work, we require that our target background include some planar region, which

is specified by the user via a hand-drawn mask (Figure 4.4(d)). We refer to this region as the refer-

ence plane region and denote the 3D plane defined by the points in this region as π (Figure 4.2(a)).

Consider a pixel p through which we can see a 3D point P in the target background. For such a point

P , there is a projection Q on the reference plane that lies at the intersection of π and the shadow ray

V that passes through P . Now consider a stick or rod that casts a shadow on P . By observing the

shadow line on the reference plane, we know that Q must lie along this line. If we re-orient the stick

such that the shadow still covers point P , we obtain a second shadow line on the reference plane



61

P
Q

V π

ls,f=(ms,f, bs,f )
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(f) Outlier rejection (g) Outlier replacement
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ls,f’ls,f-1 ls,f+1

ls,f

Figure 4.2: Illustration of the principle and details of geometric shadow scanning. Point Q is
the point on the reference plane π that lies behind point P along ray V (a). It is found at the
intersection of two shadow lines whose orientation is estimated from the reference planar region,
outlined in light yellow. For reference, the pair of images below (b,c) shows 3D renderings of the
two individual shadow lines. We estimate all shadow edge crossings using temporal analysis (d) to
identify for each pixel p the shadow time ts[p], computed as the first time the pixel color goes below
a threshold halfway between its min and max values, Imin and Imax. In the reference plane region,
we can then determine the shadow line (e) for frame f of scan s, ls,f = (ms,f , bs,f ), by linearly
interpolating between neighboring pixels with shadow times less than and greater than f (shown as
black and white dots, respectively) and then fitting a line through the interpolated points. In some
cases, line fits are poor due to spurious shadow time samples used in fitting. In the outlier rejection
step (f), we identify lines with high error (the green dotted line ls,f ), discard samples outside the
region defined by the nearest valid shadow lines on both sides (the cyan region between ls,f−1 and
ls,f+1), and then re-fit the line (the green solid line l′s,f ). Inconsistent shadow lines may still occur
when fitting to too few or closely spaced samples. In the outlier replacement step (g), we identify
these lines (e.g., the green dotted line ls,f ) by detecting rapid changes in line slopes between frames
and then replace them by interpolating neighboring line coefficients. The solid green line l ′s,f is the
replacement computed by interpolating between ls,f−1 and ls,f+1.
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that must also intersect Q. We can compute Q as simply the intersection of the two shadow lines

on the reference plane. In our implementation, we solve directly for q, the image-space projection

of Q, which is in fact the warping map w[p], by performing all computations in image coordinates,

as described in the rest of this section. (Note that the displacement between w[p] and p is actually

a measure of projective depth (parallax) in a plane-plus-parallax formulation of 3D reconstruction

[45].)

Acquisition. In practice, we use a series of directional scans, so that we can interpolate shadow

lines for pixels that are not covered by a shadow edge at an integer frame time. Since the shadows

may vary in width and the objects receiving the shadow may be very thin, we identify the leading

temporal edge of the shadow lines, rather than trying to identify spatial shadow edges. Spatial edge

detection is also less reliable in the presence of reflectance variations; the temporal analysis avoids

this problem by focusing on a single pixel at a time.

To simplify the scanning process, a person moves the scanning stick by hand, potentially casting

his or her own shadow onto the scene. Our algorithm is designed to ignore any additional moving

shadows in the image frames, as long as the stick’s shadow always appears to one side of the extra

shadow. In principle, two passes suffice to find intersections, but we use three to five passes in order

to improve the quality of the results and to cover more of the target background object. Figure 4.4(d)

shows a frame from a geometric shadow scanning sequence. The user-specified reference plane

region is shown with hatched blue lines.

Algorithm. Here is an outline of our algorithm, with details about each boldfaced step in the

paragraphs that follow.

1. For each directional scan s:

(a) Label each pixel location p with the continuous time ts[p] at which it is first crossed by

the shadow edge using temporal analysis.

(b) For each frame f , fit a shadow line equation x = ms,fy + bs,f to the points r in the

reference plane region labeled with time ts[r] = f .

(c) Perform outlier rejection and replacement on the line equation parameters (ms,f , bs,f )

to reduce noise.
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2. For each pixel location p:

(a) For each scan s, interpolate the line equation parameters (ms,bts[p]c, bs,bts[p]c) and

(ms,dts[p]e, bs,dts[p]e) from the nearest integer frames of the scan sequences to obtain the

line equation parameters (ms,ts[p], bs,ts[p]) for this pixel.

(b) Compute the intersection q of lines for all scans s.

(c) Store q as the value of the warp function for pixel p: w[p]← q.

3. Optionally, perform anisotropic diffusion to smooth the displacement map w[p] while main-

taining its structure.

Details. We perform temporal analysis [16] to identify the shadow time ts[p] (Figure 4.2(d)).

The person holding the scanning stick stays behind the trailing edge of its shadow, so we find the

first frame when the pixel color goes below a threshold halfway between its min and max values,

Imin and Imax. We linearly interpolate from the previous frame time to compute the shadow edge

time ts[p]. Also, we define the shadow contrast cs[p] as Imax − Imin; this value is later used as a

confidence measure.

For shadow line fitting, Bouguet [16] used spatial analysis to find points on a planar region

crossing the shadow edge and then fit those points to a line. However, Bouguet’s method assumes

that the reference plane is uniform in color and material. Since our goal is to handle natural scenes

with reflectance variations on the reference plane, we instead use temporal analysis to determine the

shadow lines more accurately (Figure 4.2(e)). For each frame f , we check each pixel r within the

reference planar region. For every neighboring pair of pixels for which the signs of ts[r] − f are

different, we estimate the zero-crossing point and add it to a list of candidate points on the shadow

edge. After finding all such zero-crossings, we fit them to a line using linear regression. This line

is the shadow line for frame f of scan s, parameterized by the tuple (ms,f , bs,f ). (This is similar to

a 2D version of the marching cubes method [54] for tracing isocurves, except we only collect the

points, and need not connect them into a curve.)

Because of noise and bad shadow time estimates in the reference plane, some shadow lines may

be poorly estimated. Accordingly, we perform outlier rejection and replacement to fix poorly

fitted lines. For the lines whose fitting errors (as measured by the residual) are larger than some
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threshold, we reject all the points outside the image region defined by the nearest valid shadow lines

on both sides and refit the line without those outliers (Figure 4.2(f)). Even after this refitting, some

lines may still be poorly estimated, either because we have too few points to fit or because the points

are too close together in the image. Since the orientation of the scanning stick varies smoothly

across the sequence, we identify and reject poorly fit lines by noting rapid changes in the slopes m

between frames. We then replace the rejected shadow line by interpolating the line coefficients of

the neighboring frames (Figure 4.2(g)). (We have not found discontinuities in the intercept b values

to be of use for outlier rejection, since the scanning may progress at widely varying rates.)

After interpolating the shadow lines from integer frames for each scan, we use weighted least

squares to calculate the intersection point q of all the shadow lines corresponding to shadow edges

crossing point p. We determine the weight for each line based on two factors. First, if the shadow

contrast for the scan is low, the estimated shadow time ts[p] for that pixel will be less accurate.

Second, if the shadow line was poorly fit, it might have a significant impact on the location of

intersection. In practice, we weight each line by wcwf , where the first term wc is defined as the

square of the shadow contrast cs[p]2, and the second term, wf , is defined as exp(−(Es,ts)
2), where

Es,ts is the interpolated line fitting error for scan s at time ts.

In a final step, we apply an anisotropic diffusion algorithm to smooth the displacement map

while maintaining its structure [67]. Errors in the displacement map are most severe for pixels

with low shadow contrast. Our diffusion process therefore flows data from high confidence areas

to low confidence areas. Regions with very low contrast, e.g., areas that were already in shadow or

were never shadowed, will be filled with nearby displacements that could be quite different from

the true displacements. However, these areas will essentially be unaffected by shadows we want to

transfer, so the values of the displacement map in those regions are, in principle, unimportant (see

Section 4.7 for further discussion). In the end, the displacement map effectively places all pixels on

the reference plane from which we extracted the source shadow matte (Figure 4.4(e)) to match the

geometry of the target background (Figure 4.4(f)). Figure 4.4(g) shows the warped version of the

shadow matte (Figure 4.3(d)) distorted by the recovered displacement map.
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(a) Source frame (b) Source lit image

(c) Source shadow image (d) Recovered β

Figure 4.3: Shadow matting. Starting from a source image sequence (one frame shown in (a)), we
first remove the foreground character using video matting. Our shadow matting algorithm recovers
lit and shadow images (b,c) using max/min compositing. It then estimates β by projecting observed
pixel colors onto the color lines between them (d).

4.6 Results

To illustrate our method, we filmed some outdoor scenes in uncontrolled settings (Figure 4.3) and

transferred the shadows to different target backgrounds (Figure 4.4(h,i)). Note that the source scenes

were captured with complex textured backgrounds. Video matting (Chapter 3) was employed to

extract the matte of the foreground actor. Our outdoor destination backgrounds were scanned with

three to five passes of a 96′′ × 3′′ × 1′′ wooden board (Figure 4.4(d)). We took care to sweep the

scanning stick so as to cover all the regions where the replacement shadow might be cast, while

simultaneously covering a reasonable part of the reference plane. In all our examples, we used a
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(a) Target lit image (b) Target shadow image (c) Composite without displacement

(d) Geometric shadow scanning (e) Regular grid on π (f) Displacement map visualization

(g) Warped β (h) Composite with displacement (i) Using another background

Figure 4.4: Shadow compositing. Lit and shadow images are recovered for target geometry as well
(a,b). Our composite remains unconvincing because the shadow does not conform to the background
geometry (c). We acquire multiple, oriented scans of a straight line shadow (d), and compute line
equations in the user-specified reference plane region, shown here with hatched blue lines. We then
recover a displacement map (f) from the target scene to the source reference plane (e). This map
distorts the shadow matte into the correct shape (g). In the composite (h), the shadow conforms to
the background geometry faithfully. The results using a second background are shown in (i).
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(a) Source frame (b) Target frame (c) Composite

Figure 4.5: An example of more complicated background geometry. The foreground element and
shadow are extracted from a source frame (a) and transferred to a target frame (b) containing ivy to
obtain a composite (c).

section of the ground plane as our reference plane, and our outdoor scenes were filmed at hours of

the day when the sun lay low on the horizon, so that an 8-foot stick sufficed to scan an adequate

region. In addition, we matched the camera pose and lighting by simply looking at a source image

with a shadow on the ground plane, and then “eye-balling” how the camera should be placed in the

target sequence by looking at another cast shadow.

Figure 4.5 demonstrates the advantages of our method over previous methods on a target scene

with complex geometry. The surface of the ivy is bumpy and challenging to model manually. There

is also severe self-shadowing in this scene (Figure 4.5(b)). Using previous methods, the composite

would have double-shadowing in these regions. With our method, the shadows deform naturally

to match the background geometry. Furthermore, there is no double-shadowing (Figure 4.5(c)).

In Figure 4.6, we transferred an outdoor foreground to an indoor background scene scanned with

wooden dowels.

4.7 Discussion

Our present matting and compositing method has a number of important restrictions. First, our

shadow compositing equation (4.2) is strictly only valid for scenes with one dominant, pointlike light

source, and it does not model potentially complex effects arising from interreflections.2 Second,

to estimate the lit and shadow images, we require a static camera. Third, in order to construct the

2Appendix A contains a more detailed analysis on the conditions when the shadow compositing equation holds.
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(a) Source frame (b) Target frame (c) Composite

Figure 4.6: Honey, I Shrunk the Grad Student! A source (a) and target (b) for a miniature composite
(c).

shadow displacement map, we require the source background to be planar and the target background

to contain a planar reference region. Finally, we require that the relationship of the dominant light

source, reference plane, and camera be matched in the source and target scenes.

Despite these restrictions, we believe that in many settings our approach provides a less restric-

tive capture mechanism compared to previous shadow extraction and compositing methods. As

explained in Section 1.3, existing techniques typically share our requirement for a single matched

key light source and matched cameras in order to avoid the difficult “view interpolation” and “re-

lighting” problems. However, they also require the construction and calibration of matching geom-

etry (physical or virtual sets) and the use of painstakingly lit bluescreens for source capture. Our

technique requires neither matching geometry nor blue screens.

Furthermore, some of the theoretical restrictions on our technique can be relaxed in practice.

For instance, the camera and light directions need not match precisely. As shown in the previous

section, approximate matches are good enough to create convincing composites. In addition, the

dominant light sources in our scenes are not perfect point lights, but no objectionable artifacts are

evident. Appendix A contains a more detailed analysis that explains why there are no noticeable

artifacts. For less point-like sources, we can transfer approximate penumbrae as long as the source

and target backgrounds are at a similar distance to the casting object. We could potentially even blur

or sharpen the shadow matte to create a faux shadow with a softer or harder penumbra.

Finally, we would like to extend the operating range of the shadow matting and compositing

equations, and experiments suggest that at least some extensions are possible. For instance, assum-
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ing the source and target backgrounds are Lambertian and geometrically similar, we have been able

to matte and composite plausible shadows cast by multiple light sources without taking separate

images for each light source, as shown in Figure 4.7(a). A sketch of the proof can be found in

Appendix A. In addition, our shadow density mattes are currently single-channel mattes bounded

between 0 and 1. Using unbounded, multichannel β values, our method can also be modified to

transfer approximate color-filtered shadows (Figure 4.7(b)) and, for similar source and target back-

ground geometries, caustics (Figure 4.7(c)). (Note that, while these transparent, refractive shadow

results are encouraging, the glass foreground objects were directly copied from the input frames

using a rotoscoped matte.)

Summary

We have introduced a physically-based shadow matting and compositing method. Our approach

has many advantages over previous approaches to shadow extraction and compositing. First, it

can extract both the photometric and geometric information required for shadow compositing from

natural (planar) scenes. Second, it can cast shadows onto scenes that already contain shadows, self-

shadowing, and specularities. Third, it can cast shadows onto complex geometry without manually

modeling the scene (at the price of having to do a shadow scan). Because we use the same camera

to capture our warping function as we do to capture the images of the scene itself, we avoid the

difficulties of having to accurately register an independently reconstructed model to our image.
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Source frame Composite

(a)

(b)

(c)

Figure 4.7: Our method can be extended to transfer shadows of multiple light sources (a), color-
filtered shadows (b), and caustics (c). For multiple light sources, the shadow image is taken with all
the lights turned off. Using multi-channel β’s permits color-filtered shadows. We obtain caustics by
allowing β to exceed unity.
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Chapter 5

HIGH ACCURACY ENVIRONMENT MATTING AND COMPOSITING

5.1 Introduction

Like shadows, refraction and reflection are lighting phenomena that the traditional compositing

model fails to capture. Zongker et al. introduced environment matting and compositing to capture

these effects [118]. After making a set of approximations, and by photographing an object in front of

a sequence of structured light backdrops, Zongker et al. demonstrate the ability to capture and render

the effects of reflection, refraction, and colored filtering of light from a background. The backdrops

consist of a hierarchy of finer and finer horizontal and vertical square-wave stripes from which the

matte can be extracted with O(log k) images for a k × k pixel grid. This choice of backdrops is

inspired by a related technique developed for 3D range scanning [10]. In practice, however, this

approach has a number of shortcomings.

First, Zongker et al. assume that each image pixel collects light from a single region of the back-

ground, augmented with an alpha component for straight-through partial coverage. This assumption

fails when we consider the effects of simultaneous reflection and refraction at a dielectric. Second,

the method is tuned to capturing highly specular interactions, but breaks down in the presence of

surfaces that are even moderately rough. Third, the mappings that are captured assume axis-aligned

filtering of background pixels. At pixels where this assumption does not hold, this axis alignment

results in excessive blurring and degrades the quality of the final composite. Fourth, the original

method accounts for colored filtering of light, but does not account for the effects of dispersion,

which necessitate different mappings per color channel and give rise to prismatic rainbowing ef-

fects.

In this chapter, we propose a more accurate model and matting method to address these limita-

tions at the expense of using additional structured light backdrops (requiring O(k) images).1 Again

1This chapter describes joint work with Douglas E. Zongker, Joel Hindorff, Brian Curless, David H. Salesin and
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taking inspiration from the 3D range-scanning literature, our approach uses a background consisting

of a single stripe swept over time in the vertical, horizontal, and two diagonal directions. In each

case, the stripe orientation is perpendicular to the sweeping direction. By combining sweeps with

stripes of varying widths and intensity profiles, we demonstrate an efficient method for extracting

higher quality environment mattes than the previous method.

We first discuss related work in Section 5.2. We then describe the general environment matting

model in Section 5.3. In Section 5.4, we present our model for high accuracy environment mattes

and a method to estimate the matte parameters. Then, we describe the experimental procedure used

and show results in Section 5.5. We conclude in Section 5.6 with a discussion of further extensions

and applications by others.

5.2 Related work

As with the original environment matting paper, our technique is inspired by range-scanning illu-

mination patterns. The structured-light range-scanning literature suggests many possible ways to

capture spatially varying properties of an object [10]. We should note that the end goals are sub-

stantially simpler in the range-scanning case. Range scanners attempt to recover just a handful of

parameters per pixel: primarily, depth and reflectance. Environment-matting procedures, on the

other hand, generally need to recover a continuous, spatially varying wavelength-dependent map-

ping from a background to the image plane. Even with the approximations described in Section 5.4,

we must estimate at least 21 parameters per pixel, and sometimes many more.

The most “brute force” range-scanning method is to sweep a beam of light over an object in

a raster pattern. Such an approach, while O(k2) in time since each range-image pixel is acquired

sequentially, is actually practical for triangulation and imaging radar systems [10], since the reflected

light seen by the sensor is known to have followed a straight line from the object. As a result, objects

can be imaged with fast 1D (triangulation) or 0D (imaging radar) sensors. These faster sensors

make the acquisition speeds comparable to, and in some cases better than, the O(k) swept-stripe

techniques described below. By contrast, typical objects used in environment matting will cause

light from the background to bend through or reflect off of the object in unpredictable ways, thus

Richard Szeliski, first presented in ACM SIGGRAPH 2000 [23]



73

requiring a full 2D sensor array to capture the light. In this case, the O(k2) penalty is prohibitive.

Using a swept plane of light, O(k) images can provide shape information through optical tri-

angulation [10]. Our technique uses such a pattern, though multiple oriented sweeps are required

to capture all the parameters. Note that this particular environment matting technique bears some

resemblance to the spacetime analysis described by Kanade et al. [44] and Curless and Levoy [26],

in which the authors study the time evolution of reflected light and triangulate over space and time.

By projecting a hierarchy of progressively finer stripe patterns, the required number of images

for optical triangulation can be reduced to O(log k) [77]. Zongker et al. [118] use such a stripe

hierarchy with some accompanying compromises over the swept-stripe technique.

Our work also has some connection to BRDF acquisition. Though we do not explicitly solve for

the BRDF, one could certainly imagine using environment matting to capture reflection functions

over a uniformly coated surface of known geometry, such as a sphere. A more direct connection

lies in the BRDF fitting work of Ward [108]. Using an elliptical Gaussian model for rough specular

reflection, he achieves excellent matches to goniometric samples. This model is the motivation for

our choice of oriented, elliptical, Gaussian weighting functions described in Section 5.4.

5.3 The environment compositing equation

We begin by developing a general expression for the environment compositing equation and show-

ing how it reduces to the traditional compositing equation, as well as the equation developed by

Zongker et al. [118].

An imaging system, such as a CCD camera, records a discrete set of samples over an image

plane. Let’s assume for the moment that we have a camera that measures the irradiance at each

wavelength separately. Then, for a given pixel p,2 the camera records a value C for each wavelength.

Following the environment mapping work of Blinn and Newell [15], we can express this color in

terms of an infinitely distant environment illumination E(ω),

C =

∫

W (ω) E(ω) dω . (5.1)

2Throughout this section, the derivations of equations are for a pixel p of the foreground plate. For example, C is for
C(p) and W (x) is for W (x; p). Exceptions are E(ω) and T (x), which represent the environment and are hence
independent of p.
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The weighting function W comprises all means of transport of environment lighting from all di-

rections ω through a foreground object to the camera, including any blurring due to the camera

optics and area integration at a sensor cell. This equation holds under the assumption that none of

the materials that are scattering light from the environment exhibit any wavelength coupling (e.g.,

fluorescence).

Next, we rewrite this equation as a spatial integral over a bounding surface (e.g., an environment

map). Further, we augment the equation to include an additive foreground color F . This foreground

color is typically due to some additional lighting that is separate from the environment map, though

it could encompass object emissivity as well. Under these assumptions, our equation becomes

C = F +

∫

W (x) T (x) dx , (5.2)

where T (x) is the environment map. From this equation, we can develop a series of approximations

that allow us to embed a foreground object in a new environment with varying degrees of quality.

To arrive at the traditional compositing equation (1.1), we assume that the straight-through back-

ground pixel is the only environment sample that affects the camera pixel. Let up be the rectangular-

area support of the pixel p on the background. We describe the (in this case, monochromatic)

weighting function as

W (x) = (1− α)Π(x;up) , (5.3)

where α represents the foreground’s transparency or partial pixel coverage, and Π(x; A) is the box

function of unit volume supported over an arbitrary axis-aligned area A. Next we defineM(T , A)

as the “texture-mapping operator” that performs the area integral and returns the average value of

the texture T over region A,

M(T , A) ≡
∫

Π(x; A) T (x) dx . (5.4)

Finally, defining the filtered background B to be the integral over the pixel’s support,

B ≡ M(T , up) , (5.5)

and substituting the previous three equations into equation (5.2), gives the traditional compositing

equation,

C = F + (1− α) B . (5.6)



75

Note that α typically does not have any wavelength dependence and thus cannot model color-

filtered transparency. In addition, F is a measured quantity that is added directly to the attenuated

background—in effect, it is pre-multiplied by α.

Zongker et al. model more complex lighting effects by approximating the environment as a set

of m texture maps T i(x) (the six sides of a bounding cube for instance), and by using more general

light transport paths. Their weighting function is

W (x) = (1− α)Π(x;up) +
m

∑

i=1

Ri Π(x; Ai) . (5.7)

In their formulation, the Ai represent various axis-aligned regions, each lying on a different

texture map (corresponding, typically, to a different face of the environment cube). The Ri are

reflectance coefficients describing the amount of light from the designated area of texture map i

that is reflected or transmitted by the object at a given wavelength. In this formulation, Ri captures

color-filtered transparency, and α represents only partial pixel coverage of the object. Substituting

this weighting function into equation (5.2) gives the environment compositing equation3 used by

Zongker et al.,

C = F + (1− α) B +
m

∑

i=1

RiM(T i, Ai) . (5.8)

Note that this formulation not only permits colored filtering of light, but also enables effects

such as reflection and refraction since the light contributing to a pixel can be scattered from parts of

the environment other than just the pixel directly behind the object. This approach, however, does

have several distinct limitations. First, the components of the weighting function are assumed to be

separable products of wavelength functions Ri and spatial functions Π(x; Ai). Thus, phenomena

such as dispersion are not handled, since these require the weighting functions to shift spatially

with wavelength. Second, the axis-aligned rectangle weighting functions do not simulate the effects

of, for example, smooth BRDF’s, which when mapped onto a background have a smooth, oriented

footprint. Finally, other than the straight-through α-component, the approach models only a single

mapping from a texture face to the camera. In reality, multiple mappings to the same face can and

do happen and must be modeled, for example, when reflection and refraction at an interface cause

view rays to split into distinct groups that collect light from the same texture map.

3In their paper, Zongker et al. called it the “environment matting equation.”
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Our objective, then, is to choose a different model for the weighting function that is more phys-

ically motivated and whose parameters are still easy to acquire using a simple apparatus.

5.4 High accuracy environment matting

To address the limitations of the weighting function described in Zongker et al., we generalize it to

a sum of Gaussians,

W (x) =
n

∑

i=1

Ri Gi(x) . (5.9)

In our formulation, we allow any number of contributions from a single texture map. Here, Ri is an

attenuation factor, and each Gi is a normalized, elliptical, oriented 2D Gaussian,

Gi(x) ≡ G2D(x; ci, σi, θi) , (5.10)

where G2D is defined as

G2D(x; c, σ, θ) ≡ 1

2πσuσv
exp

[

− u2

2σu
2
− v2

2σv
2

]

(5.11)

with

u = (x− cx) cos θ − (y − cy) sin θ , (5.12)

v = (x− cx) sin θ + (y − cy) cos θ . (5.13)

Here, x = (x, y) are the pixel coordinates, c = (cx, cy) is the center of each Gaussian, σ = (σu, σv)

are the “unrotated” widths (a.k.a. standard deviations) in a local uv-coordinate system, and θ is the

orientation. Figure 5.1 illustrates these parameters. Thus, our weighting function is some n-modal

Gaussian with each term contributing a reflective or refractive effect from the object. Substituting

into equation (5.2), we arrive at a new form of the compositing equation,

C = F +
n

∑

i=1

Ri

∫

G2D(x; ci, σi, θi) T (x) dx . (5.14)

(In this equation, we use T (x) to represent the set of all texture maps. The n modes of the weighting

function are distributed over m textures, where n may be larger than m in general. The choice of

the particular texture map used in computing a given Gaussian contribution i should be assumed to

be implicitly controlled by the position ci of the Gaussian weighting function.)
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Figure 5.1: Illustration of the variables used in recovering an unknown elliptical, oriented Gaussian
by sweeping out convolutions with known Gaussian stripes. As a tilted stripe T (x; r) of width σs

and position r sweeps across the background in direction s, it passes “under” the elliptical Gaussian
weighting function W (x) associated with a single camera pixel. The camera records the integral
of the product of the stripe and the weighting function, which describes a new, observed function
C(r) as the stripe sweeps. The center cr and width σr of this observed function are related to the
center c and width σ = (σu, σv) of the weighting function and the width of the stripe through
equations (5.22) and (5.23).

The key advantages of this weighting function over the one used by Zongker et al. are that:

(1) the spatial variation can be coupled with wavelength to permit modeling of dispersion; (2) it

supports multiple mappings to a single texture; and (3) it approximates the behavior of BRDF’s

more closely (using oriented Gaussian weighting functions rather than axis-aligned box functions).

In practice, each of the values C, F, Ri, ci, σi, θi and T in equation (5.14) is implemented as an

rgb vector. So, this equation actually represents three independent equations, one for each of the

color components. Our unknowns are F, Ri, ci, σi, θi, which means that each pixel encodes 3+18n

parameters.

5.4.1 Swept Gaussians for environment matting

Recovering the environment matte requires taking a set of images of an object in front of a sequence

of backdrops. Our method consists of three steps: (1) identifying pixels outside the object silhouette,

(2) recovering the foreground color, and (3) applying a set of novel background stimulus functions

to estimate the remaining parameters in the matte.
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In the first step of our high-accuracy matting method, we identify pixels that are outside the

silhouette of the object. This step is desirable for two reasons: it saves us the computational effort

of estimating the matte parameters at these pixels, and it prevents us from making potentially noisy

estimates of how straight-through background pixels map to the image, which would result in shim-

mering artifacts when rendering. To identify these pixels, we use the method of Zongker et al. In

particular, we display a coarse-to-fine sequence of horizontal and vertical square-wave background

patterns with and without the object. If we measure the same color (within a user-specified toler-

ance) at a pixel both with and without the object for each background, then we consider the pixel to

map straight through. The overhead of taking these additional images is small compared to the total

acquisition time.

To recover the foreground color, we photograph the object against two solid backgrounds. Re-

placing T (x) in equation (5.14) with a single backdrop of constant color T ′ and integrating, we

get

C = F + R T ′ , (5.15)

where R ≡∑n
i=1 Ri. Given the two images, we have two equations in two unknowns for each color

channel, i.e., the foreground color F and the aggregate attenuation factor R. Solving the system of

equations yields the foreground color.

Once we have the silhouette mask and the foreground color, we can solve for the remaining

parameters of equation (5.14) using a large set of controlled backdrops (i.e., stimulus functions).

Zongker et al. use a hierarchical set of square-wave stripe patterns in both the vertical and horizontal

directions. They encounter difficulties with this method for two reasons: (1) the square waves are not

good stimuli for recovering smooth functions, and (2) there is no obvious way to recover multiple

mappings to the backdrop using these stimuli. To combat the first problem, we choose a smooth

set of stimulus functions. To address the second, we constrain the stimuli to be narrow in one

dimension, sweeping over time to reveal multiple mappings to the same background. Our choice of

stimulus function, then, is a set of swept Gaussian stripes.

Let’s see how we can use sweeping stripes to recover some of the parameters of our weight-

ing functions. To begin, let us assume that the weighting function is unimodal and axis-aligned

(n = 1 and θ = 0). Under these assumptions, we can omit the summation and the subscript i in
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equations (5.9) and (5.10) and then decompose the 2D Gaussian weighting function into two 1D

components,

W (x) = R G1D(x; cx, σu) G1D(y; cy, σv) , (5.16)

where

G1D(x; c, σ) =
1√
2πσ

exp

[

−(x− c)2

2σ2

]

. (5.17)

Our first stimulus function will be a vertical stripe that is constant in y and has a 1D Gaussian

intensity profile in x with width σs,

T (x) = G1D(x; 0, σs) . (5.18)

Now consider sweeping the stripe horizontally, displacing it at each step by some offset r,

T (x; r) = G1D(x− r; 0, σs) = G1D(r − x; 0, σs) . (5.19)

The camera observation at a pixel is then given by

C(r) =

∫

W (x) T (x; r) dx

=

∫∫

R G1D(x; cx, σu) G1D(y; cy, σv) G1D(r−x, 0, σs) dx dy

=

∫

R G1D(x; cx, σu) G1D(r−x; 0, σs) dx ·
∫

G1D(y; cy, σv) dy

= R G1D(r; cx, σu) ∗G1D(r; 0, σs) · 1

= R G1D(r; cx,
√

σu
2 + σ2

s) . (5.20)

Thus, at each pixel, we expect to record a Gaussian evolving over time. Given an illumination stripe

of known width, we can now estimate the rgb parameters cx and σu using the procedure described

below in Section 5.4.2. By symmetry, we can recover the vertical center coordinate and width by

sweeping a horizontal Gaussian stripe in the vertical direction behind the foreground object. Thus,

for the case of a single, unoriented Gaussian weighting function, a horizontal and a vertical swept

Gaussian stripe are enough to estimate all the remaining parameters of the environment matte.

Figure 5.1 illustrates the more general case of a sweeping stripe that is constant in the t-direction

and has Gaussian profile in the s-direction. This stripe is oriented at an angle φ with respect to the
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Figure 5.2: The green concentric rings depict a possible bimodal weighting function. The curves
around the image indicate the convolved projections resulting from sweeping horizontal, vertical,
and left and right diagonal Gaussian stripes across the screen independently. The horizontal and ver-
tical sweeps alone (purple) are insufficient to determine the mode positions, but by adding additional
diagonal sweeps (yellow) the correct modes can be determined.

xy-coordinate system and travels in the s-direction. Under these circumstances, it is straightforward

to show that the observation at a pixel will be

C(r) = R G1D(r; cr, σr) , (5.21)

where

cr = cx cos φ + cy sin φ , (5.22)

σr =

√

σu
2 cos2(φ− θ) + σv

2 sin2(φ− θ) + σ2
s . (5.23)

Here, cr is the center of the weighting function projected onto the r-axis, and σr is the projected,

convolved standard deviation of the observed Gaussian.

Horizontally and vertically swept stripes alone (φ = 0◦ and 90◦, respectively) are not enough

to determine the weighting function, so we introduce two diagonal passes at φ = 45◦ and −45◦.

The additional oriented stripes serve another purpose: disambiguating multiple mappings to the

backdrop. As shown in Figure 5.2, a bimodal weighting function results in two Gaussian images

over time at a pixel as the stripe sweeps across. If we use just the horizontal and vertical stripes, the
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two modes recorded in each sweep yield multiple indistinguishable interpretations of the bimodal

weighting function. The oriented stripes can be used to disambiguate these choices, as described

below.

5.4.2 Estimating the matte parameters

In practice, our acquisition process entails stepping each Gaussian stripe across a computer screen

and recording a set of samples for each sweep and for each color channel. Given this data, we seek

the best set of parameters that explain the measurements. We estimate these parameters (separately

for each color channel) in four steps: (1) identifying the number of Gaussians modes in the response,

(2) solving for the projected centers and widths associated with each Gaussian mode, (3) intersecting

the centers to localize the Gaussian modes, and (4) computing the parameters for each Gaussian

mode.

To identify the number of Gaussians for the response to a given stripe sweep, we search for a

series of peaks above the noise floor of the sensor. To make this process more robust, we first filter

the 1D response function, and then identify the peaks. The locations of the peaks are the starting

points for the projected centers of the projected modes. If the projected modes are clearly separated,

we also estimate the projected widths by examining the extent of the signal that is above the noise

floor. For two overlapping modes, we compute the distances from the left mode to the left extent

and the right mode to the right extent and then estimate widths accordingly. For more overlapping

modes, we compute the total width and divide by the number of modes. In any case, these center

and width estimates are simply starting points for a Levenberg-Marquardt optimization procedure

[70] that takes the original data, the number of Gaussians, and the initial center and width estimates

in order to find the best centers and widths that explain the data.

Next, we use the sets of projected centers to choose the most likely locations of the Gaussian

modes Gi (from equation (5.10)). The centers computed in the previous step should each corre-

spond to the center of a Gaussian mode as projected onto the axis defined by the stripe. We then

construct a line passing through each projected center point running parallel to the stripe’s t direc-

tion. We consider all 4-tuples of horizontal, vertical, and two diagonal lines, and hypothesize their

intersections by computing the point closest to each set of four lines. We measure the distance of
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(a) Pie tin (b) Crystal

Figure 5.3: Screen shots of an interactive environment matte explorer. The explorer allows a user
to interactively select a pixel on the composited image in the upper right pane (highlighted here
in green). For any given pixel, the explorer shows the estimated Gaussian weighting functions
for each color channel in the vertical, horizontal, and two diagonal directions. Each function is
drawn twice: once on the scale of the pixel grid, and once on an expanded scale that magnifies the
area around the peak. For the pie tin (a), the upper-middle panel shows the estimated weighting
function for the selected pixel. (Here, only the weighting function for the red channel is shown.)
The estimated oriented weighting function clearly shows the need to model the orientation for the
weighting function. For the crystal (b), the upper-middle panel has superimposed stripes showing
the estimated centers of the red, green, and blue responses in each direction. The crystal object
here clearly demonstrates the effects of chromatic dispersion by the offset stripes in the different
color channels. In addition, the upper-middle panel shows the resolution of the bimodal weighting
function.

that point to each of the lines, and apply a user-specified tolerance to reject or accept the purported

intersection.

Finally, given the set of Gaussian modes selected by the intersection process, we determine the

parameters of each Gaussian mode. For each identified mode, we have estimates of the convolved,

projected parameters according to equations (5.22) and (5.23). We compute R as the average of

individually computed R’s. The center ci of Gi is simply the closest point to the lines as described

in the previous step. Finally, we have four equations that relate the width and orientation of each

Gaussian mode to the four measured widths. We solve this over-constrained, non-linear system of

equations by finely sampling the space of possible orientations, solving for the linear-least-squares-

best width parameters, and then choosing the orientation and widths that yield the lowest overall

error.
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Figure 5.4: The resolution of the correspondence between Gaussians. Assuming that there are
two Gaussians in both mattes, to decide the corresponding Gaussian for G00 in the matte W 1(x),
we calculate the two interpolated centers c00 and c01 assuming G00 corresponds to G10 and G11

respectively. The interpolated center c00 coincides with a Gaussian in the matte W 2(x) but c01 does
not. Hence, we associate G00 with G10.

The result of this sequence of steps is a reasonable estimate for the number of Gaussian modes

and their parameters. As a final step, we apply a full Levenberg-Marquardt optimization to find the

best ci, σi, and θi that explain all of the measurements. Figure 5.3 illustrates the response at a given

pixel for each sweep and the estimated weighting function.

5.4.3 Depth correction

Thus far, our method allows us to acquire environment mattes for objects at a fixed distance from

the backdrop. Hence, the composites are effectively performed in front of backdrops at the same

depth as the mattes were acquired. To composite the object at a novel depth, we need to acquire a

matte at the same depth.

To allow composting at arbitrary depths, as suggested by Zongker et al. in their paper [118],

we extract two different environment mattes W 0(x) and W 1(x) for the foreground object using

backdrops placed at two different depths, δ0 and δ1. Given a novel depth δ, to approximate the envi-

ronment matte W (x) at that depth, we linearly interpolate the parameters of W 0(x) and W 1(x).

However, to perform this interpolation, we have to find the associations between Gaussians G0i’s

and G1i’s in the mattes W 0(x) and W 1(x). We assume that both mattes have the same number

of Gaussians. In a rare case, if the numbers of Gaussians do not match, we drop the Gaussians
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Figure 5.5: A photograph of our experimental setup for acquiring high accuracy environment mat-
tes.

with smaller attenuation factors Ri’s in the matte with more Gaussians. To find the correspondence

between Gaussians, we acquire a third environment matte W 2(x) using a backdrop located at a

depth δ2 in between the two original depths. If two Gaussians correspond, their interpolated center

at depth δ2 must coincide with the center of some Gaussian in W 2(x). Hence, we can use this fact

to resolve the correspondence between Gaussians. Figure 5.4 gives an example of resolving such

ambiguity. After finding the correspondences between Gaussians, the parameters for W (x) can be

interpolated using W 0(x) and W 1(x) accordingly. Note that W 2(x) is captured only for finding

the correspondences between G0i’s and G1i’s, and is not necessary to be stored for compositing.4

5.5 Results

Figure 5.5 shows our experimental setup. A Sony DCR-TRV900 digital video camera records im-

ages of an object as one of three monitors presents a sequence of stimulus functions. We correct

for non-linearities in the video camera using Debevec and Malik’s method [30]. To calibrate each

monitor’s brightness settings, we display a sequence of solid gray images and record them with

4In principle, W 2(x) can also be used to determine if the Gaussians shrink to a zero width and expand again from
W 0(x) to W 1(x), but we did not implement it.
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the radiometrically corrected camera. After averaging the gray values within each image, we have a

mapping between gray values on the computer and displayed radiance. Each stripe image is adjusted

so that the profile is Gaussian in radiance space.

After calibration, we begin imaging the object by extracting the foreground color and silhouette

mask as described in the previous section. Next, we display the sequence of background patterns.

We translate each Gaussian stripe across the screen in steps of σs/2 to ensure enough samples for

the estimation procedure. We typically use σs = 2 or 4 (measured in camera pixels) requiring about

300 or 150 stripe positions, respectively, per horizontal, vertical, or diagonal sweep. Due to the

lack of synchronization between the monitor refresh and the camera, we are unable to capture at

video rates; instead, a typical capture plus digital video transfer requires roughly 30 minutes. (With

a synchronized system and real-time transfer to PC memory, we expect acquisition could take less

than a minute.) Processing time for an environment matte is typically about 20 minutes on a 400

MHz Pentium II PC with 128 MB of RAM.

We demonstrate the accuracy of our new environment matting algorithm on three objects. For

each example, we render the matte by explicitly integrating the oriented Gaussian filters over the

background. The results are shown in Figures 5.6 and 5.7.

The first object is a crystal in the shape of a regularly triangulated sphere, shown in Figure 5.6(a).

The planar facets give rise to prismatic rainbowing effects due to dispersion. This effect is captured

by our new matting algorithm because we estimate a different Gaussian weighting function (with

a different center) for each color channel. This effect is not modeled by the old matting algorithm,

which breaks down even further due to the multiple mappings at pixels that straddle crystal facets.

The multiple mapping problem is more clearly demonstrated by our next object, a beer glass

laid on its side (Figure 5.6(b)). Due to the grazing angle, simultaneous reflection and refraction at

the top of the glass results in bimodal mappings to the background. The old method simply cannot

handle this phenomenon, whereas the new method captures the effect realistically.

Finally, we captured an environment matte for a pie tin with a rough surface, oriented to cause

tilted reflections from the backdrop. Figure 5.6(c) demonstrates the failure of the old method to

capture the large, smooth weighting function indicative of surface roughness, in contrast to the new

method’s success.

Figure 5.7 demonstrates the importance of capturing the orientation of the weighting function.
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(a)

(b)

(c)

Zongker et al. High accuracy EM Reference photo

Figure 5.6: Comparisons between the composite results of the previously published algorithm,
the high accuracy environment matting technique described here, and reference photographs of the
matted objects in front of background images. Lighting in the room contributed a yellowish fore-
ground color F that appears, e.g., around the rim of the pie tin in the bottom row. (a) A faceted
crystal ball causes rainbowing due to prismatic dispersion, an effect successfully captured by the
high accuracy technique since shifted Gaussian weighting functions are determined for each color
channel. (b) Light both reflects off and refracts through the sides of a glass. This bimodal contri-
bution from the background causes catastrophic failure with the previous unimodal method, but is
faithfully captured with the new multi-modal method. (c) The weighting functions due to reflections
from a roughly-textured pie tin are smooth and fairly broad. The new technique with Gaussian illu-
mination and weighting functions handles such smooth mappings successfully, while the previous
technique based on square-wave illumination patterns and rectangular weighting functions yields
blocky artifacts.
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(a) (b)

(c) (d)

Figure 5.7: Oriented weighting functions reflected from a pie tin. (a) As in Figure 5.6, the previous
method yields blocky artifacts for smooth weighting functions. (b) Using the high accuracy method
with unoriented Gaussians (θ = 0) produces a smoother result. (c) Results improve significantly
when we orient the Gaussians and solve for θ. In this case, θ ≈ 25◦ over most of the bottom surface
(facing up) of the pie tin. (d) Reference photograph.

(a) (b) (c) (d)

Figure 5.8: An environment matte rendered at novel depths. Parts (a)-(d) are composites of a glass
fish rendered at four different depths. The composites (a) and (d) correspond to the two depths at
which we extracted mattes, whereas the composites (b) and (c) are composited using the interpolated
environment mattes at two novel depths.
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When we apply the new method without estimating orientation (i.e., by simply using the widths

determined by the horizontal and vertical sweeps), the texture lines running at 25◦ off of vertical are

significantly blurred. After estimating the orientation, we obtain a matte that faithfully preserves

these details.

Figure 5.8 shows results for depth correction, captured for a glass fish. We captured environment

mattes of the glass fish at two different depths corresponding to Figure 5.8(a) and (d). Figure 5.8(b)

and (c) show the composites using the interpolated environment mattes at two novel depths.

5.6 Extensions and applications

As in traditional matting, environment matting involves an inherent tradeoff: the amount of input

data required and the use of an active or passive illumination versus the restriction and quality of the

resulting matte (See Table 1.1). Our method and the previous method of Zongker et al. represent

two points in the environment matting design space. In this section, we discuss three other points in

this design space, one of them (real-time environment matting) explored contemporaneously with

the method described in this chapter, and two that followed.

Although relaxing some restrictions on the weighting functions placed by the previous method

of Zongker et al., our approach still restricts the weighting function to be a sum of a limited number

of oriented elliptical Gaussians. Peers et al. propose an environment matting technique, called

wavelet environment matting (wavelet EM), that makes no assumption on the form of the weighting

function at the expense of using even more backdrops [65]. Theoretically, their method would

require O(k2) backdrops. To be more efficient, they use a set of wavelet illumination patterns Bi to

exploit their hierarchical nature for reducing the number of backdrops. During acquisition, an error-

tree is employed to decide the subsequent patterns to use based on previously recorded photographs.

Hence, the displayed patterns are determined on fly, adapting to the observed properties of the

environment matte. The process repeats until reaching a stop criterion. In practice, they set a

time limit of 12 hours as the stopping criterion and found it sufficient for capturing most types of

objects. On average, thousands of photographs are captured. Instead of being represented by a set

of parameters, the weighting function is directly represented by a set of photographs Ci acquired in

front of the wavelet backdrops Bi. During compositing, the novel background B for compositing is
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projected onto the space spanned by the wavelet backdrops Bi to obtain coefficients ai so that B≈
∑

i aiBi. The composite is then computed as
∑

i aiCi. This avoids the optimization procedure for

finding parameters of the weighting functions, but requires a large amount of storage for the images

Ci. The authors report that an average of 2.5GB is required for a single object. One strength of this

approach is that it allows the capture of diffuse reflections, which proved difficult to capture using

our swept stripe patterns, because the illumination due to any single stripe was too weak. However,

by acquiring high-dynamic-range radiance images, we suspect the weak illumination problem is

solvable. In any case, it would be instructive to compare our Gaussian weighting function to their

wavelet model for handling diffuse objects.

In contrast to the approaches that attempt to improve the quality of the mattes, real-time envi-

ronment matting (real-time EM) requires only one backdrop and allows the capture of environment

mattes for transparent objects in motion, such as water pouring into a glass, at the expense of the

quality of the resulting matte [23]. Real-time EM utilizes a calibrated color ramp B as the backdrop.

This approach essentially represents the weighting function by a warping function. For a pixel p,

real-time EM projects the observation color C(p) from black onto the calibrated background man-

ifold in rgb space. The position of the projected point gives the position q on the background con-

tributing to p. This procedure, however, leads to significant random distortions, because observation

noise directly and significantly affects the estimated mappings to background pixels. To overcome

the effects of noise, a non-linear discontinuity-preserving filter [67] is applied to the matte. While

allowing capture of moving objects, this technique is only designed to work with perfect specular

refractive/reflective colorless objects.

The methods we have discussed so far are all active approaches, and hence require a calibrated

laboratory setting. Wexler et al. [113] propose an approach, called image-based environment mat-

ting (image-based EM), to pull an environment matte from a sequence of images Ci in which a

static foreground object is filmed in front of a moving background or by a panning camera in front

of a natural background. For their method to work, clean plates Bi are required. These could be

obtained by mosaicking the moving-background in a manner similar to the one described in Sec-

tion 3.3.1. For each pixel p in the environment matte, a probability map Pi is built for a background

Bi: Pi(q)∝ exp(−‖Ci(p)−Bi(q)‖2), where q is a pixel on the background. This probability map

potentially has many peaks where the color Bi(q) on the background is similar to Ci(p). Since
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we have multiple backgrounds, we can integrate these probability maps Pi’s by multiplying them

together to get rid of the false peaks, essentially identifying the location of the pixel contributing

to p on the background. Although, in principle, their weighting function (essentially the integrated

probability map) allows an arbitrary weighting function, the way of constructing the probability map

restricts the refractive and reflective properties of the object. As with real-time EM, their method is

only effective for capturing colorless specular objects. Furthermore, image-based EM is a multiple-

frame approach, requiring multiple frames for extracting a single environment matte. Hence, the

object must be static during the acquisition, and the success of this method relies on having enough

background samples or sufficiently rich backdrop images.

Thus far, all methods discussed capture environment mattes for a fixed viewpoint. Matusik

et al. [59] combine environment matting and reflectance fields to acquire an image-based repre-

sentation of transparent and refractive objects including their 3D shapes. They employ the high

accuracy environment matting method presented in this chapter to acquire the environment mattes

from many views. The object can then be viewed from arbitrary novel viewpoints by interpolating

the environment mattes of nearby viewpoints. For interpolation, as described in Section 5.4.3, they

have to resolve the ambiguity of matching Gaussians. To resolve matching ambiguities, they assume

that there are at most two Gaussians, one for reflection and one for refraction, and only match Gaus-

sians of the same type. Since they also capture the geometry, they can compute the angle between

the surface normal and the vector from the surface point to the center of the Gaussian. A Gaussian

is classified as reflective if this angle is smaller than 90◦; otherwise, it is transmissive.

Summary

This chapter presents a method for capturing a higher quality environment matte in which each

pixel can see one or more different Gaussian regions of the environment on a per-channel basis.

This method allows for the capture of complex and subtle interactions of light with objects with

multi-modal refraction and reflection, or with prismatic color dispersion, thus, advancing the state

of the art in environment matting.
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Chapter 6

APPLICATION: ANIMATING PICTURES

6.1 Introduction

Matting and composting have many applications. This chapter presents a novel application of natu-

ral image matting for taking a still picture and making it move in convincing ways.

When we view a photograph or painting, we perceive much more than the static picture before

us. We supplement that image with our life experiences: given a picture of a tree, we imagine it

swaying; given a picture of a pond, we imagine it rippling. In effect, we bring to bear a strong set

of “priors” (to use the technical jargon from statistics), and these priors enrich our perceptions.

In this chapter, we explore how a set of explicitly encoded priors might be used to animate pic-

tures on a computer. The fully automatic animation of arbitrary scenes is, of course, a monumental

challenge. In order to make progress, we make the problem easier in two ways. First, we use a

semi-automatic, user-assisted, approach. In particular, we have a user segment the scene into a set

of animatable layers and assign certain parameters to each one. Second, we limit our scope to scenes

containing passive elements that respond to natural forces in some oscillatory fashion. The types of

passive elements we explore include plants and trees, water, floating objects like boats, and clouds.

The motion of these objects is driven by the same natural force, namely, wind. While these may

seem like a limited set of objects and motions, they occur in a large variety of pictures and paintings,

as shown in Figure 6.2.

It turns out that all of these elements can be animated in a similar way. First, with the help of

our Bayesian matting algorithm (Chapter 2), we can segment the picture into a set of user-specified

layers. As each layer is removed from the picture, inpainting is used to fill in the resulting hole.

Next, for each layer, we synthesize a stochastic motion texture using spectral methods [90]. Spectral

methods work by generating a noise spectrum in the frequency domain, applying a (physically

based) spectrum filter to that noise, which is specific to the type of natural force and to the type
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and parameters of the passive object being affected, and computing an inverse Fourier transform to

create the stochastic motion texture. This motion texture is a time-varying 2D displacement map,

which is applied to the pixels in the layer. Finally, the warped layers are recomposited to form the

animated picture for each frame.

The resulting moving picture can be thought of as a kind of video texture [79]—although, in

this case, a video texture created from a single static image rather than from a video source. Thus,

these results have potential application wherever video textures do, i.e., in place of still images on

Web sites, as screen savers or desktop “wallpapers,” or in presentations and vacation slide shows.

In addition, creating video textures from a static image rather than from a video source has certain

advantages.

First, because they are created synthetically, animated pictures allow greater creative control

in their appearance. For example, the wind direction and amplitude can be tuned for a particular

desired effect. Second, consumer-grade digital still cameras generally provide much higher image

quality and greater resolution than their video camera counterparts. These advantages may allow

video textures to be used in entirely new situations that were not previously practical. For example,

controllable, high-resolution video textures might be usable for animated matte paintings in special

effects.

We begin with a discussion of related work (Section 6.2) followed by an overview that describes

the basic flow of our system (Section 6.3). We then address our most important subproblem, namely

synthesizing stochastic motion texture (Section 6.4). Finally, we discuss our results (Section 6.5)

and conclude with a summary.

6.2 Related work

Our goal is to synthesize a stochastic video from a single image. Hence, our work is directly related

to the work on video textures and dynamic textures [79, 89, 98, 107, 109]. Like our work, video

textures focus on “quasi-periodic” scenes. However, the inputs to video texture algorithms are short

videos that can be analyzed to mimic the appearance and dynamics of the scene. In contrast, the

input to our work is only a single image.

Our work is, in spirit, similar to the “Tour Into the Picture” system developed by Horry et al. [41].
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Their system allows users to map a 2D image onto a simple 3D box scene based on some interac-

tively selected perspective viewing parameters such as vanishing points. This allows users to in-

teractively navigate into a picture. Criminisi et al. [25] propose an automated technique that can

produce similar effects in a geometrically correct way. More recently, Oh et al. [63] developed an

image-based depth editing system capable of augmenting a photograph with a more complicated

depth field to synthesize more realistic effects. In our work, instead of synthesizing a depth field to

change the viewpoint, we add motion fields to make the scene change over time.

For certain classes of motions, our system requires the users to specify a skeleton for a layer. It

then performs a physically-based simulation on the skeleton to synthesize a motion field; it is there-

fore similar to skeleton-based animation approaches. Litwinowicz and Williams [53] use keyframe

line drawings to deform images to create 2D animations. Their system is quite useful for traditional

2D animation. However, their technique is not suitable for modeling the natural phenomena we

target because such motions are difficult to keyframe. In addition, they use a smooth scattered data

interpolation to synthesize a motion field without any physical dynamics model.

Our work also has similar components to the object-based image editing system proposed by

Barrett and Cheney [4], namely, object selection, matte extraction, and hole filling. Indeed, Barrett

and Cheney have also demonstrated how to generate a video from a single image by editing and in-

terpolating keyframes. Like Litwinowicz’s system, the focus is on key-framed rather than stochastic

(temporal texture-like) motions.

An earlier attempt to create the illusion of motion from an image was the “Motion without

movement” paper by Freeman et al. [33]. They apply quadrature pairs of oriented filters to vary the

local phase in an image to give the illusion of motion. While the motion is quite compelling, the

band-pass filtered images do not look photorealistic.

Even earlier, at the turn of the (20th) century, people painted outdoor scenes on pieces of masked

vellum paper and used series of sequentially timed lights to create the illusion of descending water-

falls [39]. People still make this kind of device, which is often called a kinetic waterfall. Another

example of a simple animated picture is the popular Java program Lake applet, which takes a single

image and perturbs the image with a set of simple ripples [36]. Though visually pleasing, these

results often do not look realistic because of their lack of physical properties.

Working on an inverse problem to ours, Sun et al. [94] propose a video-input driven animation
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(VIDA) system to extract physical parameters, like wind speed, from real video footage. They then

use these parameters to drive the physical simulations of synthetic objects to integrate them consis-

tently with the source imagery. They estimate physical parameters from observed displacements;

we synthesize displacements using a physical simulation based on user-specified parameters. They

target a similar set of natural phenomena to those we study, such as plants, waves, and boats, which

can all be explained as harmonic oscillations.

To simulate our dynamics, we use physically-based simulation techniques previously developed

in computer graphics for modeling natural phenomena. For waves, we use the Fourier wave model

to synthesize a time-varying height field. Mastin et al. [56] were the first to introduce statistical

frequency-domain wave models from oceanography into computer graphics. In a similar way, we

synthesize stochastic wind fields [82, 92] by applying a different spectrum filter. When applying

the wind field to trees, since the force is oscillatory in nature, the corresponding motions are also

periodic and can be solved more robustly and efficiently in the frequency domain [83, 91].

Aoki et al. [2] coupled physically-based animations of plants with image morphing techniques

as an efficient alternative to the expensive physically-based plant simulation and synthesis, but only

demonstrated their concept on synthetic images. In our work, we target real pictures and use our

approach as a way to synthesize video textures for stochastic scenes.

Our system requires users to segment an image into layers. We use our Bayesian image matting

algorithm to extract alpha mattes from the input image (Chapter 2). To fill in holes left behind after

removing each layer, we use an inpainting algorithm [9, 24, 31, 42].

6.3 System overview

Given a single image I , how can we generate a continuously moving animation? The approach we

follow is to break the image up into several layers and to then synthesize a motion texture1 and apply

it to each layer individually.

A motion texture is essentially a time-varying displacement map defined by a motion type, a

set of motion parameters, and optionally a motion skeleton. A displacement map D is a set of

1We use the terms motion texture and stochastic motion texture interchangeably in the paper. The term motion texture
was also used by others [51, 71] to refer to linear dynamic system learned from motion capture data.
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Figure 6.1: Overview of our system. The input still image (a) is manually segmented into several
layers (b). Each layer Li is then animated with a different stochastic motion texture M(t) (c).
Finally, the animated layers Li(t) (d) are composited back together to produce the final animation
I(t) (e). The input painting is Claude Monet’s The Bridge at Argenteuil.

displacement vectors,

D(p) = (dx(p), dy(p)) , (6.1)

for pixels p = (x, y). A motion texture M(t) is a mapping from a time t to a displacement map D.

Applying a displacement field D directly to an image I results in a forward warped image I ′

such that

I ′(x + dx(p), y + dy(p)) = I(x, y) . (6.2)

However, since forward mapping is fraught with problems such as aliasing and holes, we actually

use inverse warping, I ′ = D′ ? I , where

I ′(x, y) = I(x + d′x(p), y + d′y(p)) . (6.3)

We could compute the inverse displacement map D′ from D using the two-pass method suggested

by Shade et al. [81]. Instead, since our motion fields are all very smooth, we simply dilate them by

the extent of the largest possible motion and reverse their sign.
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With this notation in place, we can now describe the basic workflow of our system (Figure 6.1),

which consists of three steps: layering and matting, motion specification and editing, and finally

rendering.

Layering and matting. The first step, layering, is to segment the input image I into layers so

that, within each layer, the same motion texture can be applied. For example, for the painting in

Figure 6.1(a), we have the following layers: water, sky, bridge and shore, three boats, and the eleven

trees in the background (Figure 6.1(b)). To accomplish this, we use the interactive Bayesian matting

system described in Section 2.4.2.

Because some layers will be moving, occluded parts of the background might become visible.

Hence, after extracting a layer, we use an inpainting algorithm to fill the hole in the background

behind the foreground layer. We use the example-based inpainting algorithm of Criminisi et al. [24]

because of its simplicity and its capacity to handle both linear structures and textured regions. Note

that the inpainting algorithm does not have to be perfect, since only pixels near the boundary of the

hole are likely to become visible. However, sometimes, we do have to perform manual inpainting to

better maintain the layers’ structures, for example, for the boats in Figure 6.1. After the background

image has been inpainted, we work on this image to extract the next layer. We repeat this process

from the closest layer to the furthest layer to generate the desired number of layers. Each layer Li

contains a color image Fi, a matte αi, and a depth δi (an index to indicate compositing order). The

depth could be automatically assigned according to the order in which the layers are extracted.

Motion specification and editing. The second component of our system lets the user specify and

edit the motion texture for each layer. Currently, we provide the following motion types: trees

(swaying), water (rippling), boats (bobbing), clouds (translation), and stone (no motion). For each

motion type, the user can tune the motion parameters and specify a motion skeleton, where appli-

cable. We describe the motion parameters and skeletons in greater detail for each motion type in

Section 6.4.

Since all of the motions we currently support are driven by wind, the user controls a single

wind speed and direction, which is shared by all the layers. This allows all the layers to respond to

the wind consistently. Our motion synthesis algorithm is fast enough to animate a single layer in
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real-time. Hence, the system can provide instant visual feedback to changes in motion parameters,

which makes motion editing easier. Each layer Li has its own motion texture, Mi, as shown in

Figure 6.1(c).

Rendering. During the rendering process, for each time instance t and layer Li, a displacement

map Mi(t) is synthesized. This displacement map is then applied to Fi and αi to obtain Li(t) =

Mi(t)?Li(0) (Figure 6.1(d)). Notice that the displacement is evaluated as an absolute displacement

of the input image I(0) rather than a relative displacement of the previous image I(t − 1). In this

way, repeated resampling is avoided.

Finally, all the warped layers are composited together from back to front to synthesize the frame

at time t, I(t) = L1(t) � L2(t) � . . . � Ll(t), where δ1 ≥ δ2 · · · ≥ δl and � is the over opera-

tion (Figure 6.1(e)). The user can also specify a time-varying wind field to create a more realistic

animation.

6.4 Stochastic motion textures

In this section, we describe our approach to synthesizing the stochastic motion textures that drive

the animated image. In Section 6.4.1, we describe the basic principles (spectral methods). We then

describe the details of each motion type, i.e., trees (Section 6.4.2), water (Section 6.4.3), bobbing

boats (Section 6.4.4), and clouds (Section 6.4.5).

6.4.1 Stochastic modeling of natural phenomena

Many natural motions can be seen as harmonic oscillations [94], and, indeed, hand-crafted superpo-

sitions of handfuls of sinusoids have often been used to approximate many natural phenomena for

computer graphics. However, this simple approach has some limitations. First of all, it is tedious

to tune the parameters to produce the desired effects. Second, it is harder to hook all the motions

together in a consistent way, since they lack a physical basis. Lastly, the resulting motions do not

look natural since they are strictly periodic — irregularity actually plays a central role in modeling

natural phenomena.

One way to add randomness is to introduce a noise field. Introducing this noise directly into the
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temporal or spatial domain often leads to erratic and unrealistic simulations of natural phenomena.

Instead, we simulate the noise in the frequency domain, and then sculpt the spectral characteristics to

match the behaviors of real systems that have intrinsic periodicities and frequency responses. Spe-

cific spectrum filters need to be applied to model specific phenomena, leading to so-called spectral

methods.

The spectral method for synthesizing a stochastic field in general has three steps: (1) generate

a complex Gaussian random field in the frequency domain, (2) apply a domain-specific spectrum

filter, (3) compute the inverse Fourier transform to synthesize a stochastic field in the time or fre-

quency domain. A nice property of this method is that the synthesized stochastic field can be tiled

seamlessly. Hence, we only need to synthesize a patch of reasonable size and tile it to produce a

much larger stochastic signal. This tiling approach works reasonably well if the size of the patch is

large enough to avoid objectionable repetition.

To realistically model natural phenomena, the filter should be learned from real-world data. For

the phenomena we simulate, plants and waves, such experimental data and statistics are available

from other fields, e.g., structural engineering and oceanography, and have already been used by the

graphics community to create synthetic imagery [56, 82, 92]. We use these methods to synthesize

our stochastic motion textures in the following sections.

6.4.2 Plants and trees

The branches and trunks of trees and plants can be modeled as physical systems with mass, damping,

and stiffness properties. The driving function that causes branches to sway is typically wind. Our

goal is to model the spectral filtering due to the dynamics of the branches applied to the spectrum of

the driving wind force.

To model the physics of branches, we take a simplified approach introduced by Sun et al. [94].

In particular, each branch is represented as a 2D line segment parameterized by l, which ranges

from 0 to 1. This line segment is drawn by the user for each layer. Displacements of the tip of

the branch dtip(t) are taken to be perpendicular to the line segment. Modal analysis indicates that

the displacement perpendicular to the line for other points along the branch can be simplified to the
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form

d(l, t) =

[

1

3
l4 − 4

3
l3 + 2l2

]

dtip(t) . (6.4)

We approximate the (scalar) displacement of the tip in the direction of the projected wind force as a

dampled harmonic oscillator,

¨dtip(t) + γ ¨dtip(t) + 4π2f2
o dtip(t) = r(t)/m , (6.5)

where m is the mass of the branch, fo = ks/m is the natural frequency of the system, γ = kd/m is

the velocity damping term [94]. These parameters have a more intuitive meaning than the damping

(kd) and stiffness (ks) terms found in more traditional formulations. The driving force r(t) is derived

from the wind force incident on the branch, as detailed below.

Taking the temporal Fourier transform of this equation gives us

Dtip(f) =
R(f) exp−i2πθ

2πm
[

(f2 − f2
o )2 + γ2f2

]−1/2
, (6.6)

where R(f) is the Fourier transform of the driving force and f is the temporal frequency. The phase

shift θ is given by,

tan θ =
γf

f2 − f2
o

. (6.7)

We can see from equation (6.6) that the dynamical system is acting as a non-zero phase spectral

filter on the forcing spectrum R(f).

Next, we model the forcing spectrum for wind. Experimental evidence [85, page 55] indicates

that the temporal velocity spectrum of wind at a point takes the following form,

V (f) ∼ vmean

(1 + κf/vmean)
5/3

, (6.8)

where vmean is the mean wind speed and κ is generally a function of altitude which we take to be a

constant. We therefore modulate a random Gaussian noise field G(f) with the velocity spectrum to

compute the spectrum of a particular (random) wind velocity field,

Ṽ (f) = V (f)G(f) . (6.9)
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The force due to the wind is generally modeled as a drag force proportional to ṽ2(t). However, in

our experiments, we have found that making the wind force directly proportional to wind velocity

produces more pleasing results.

Finally, we assemble equations (6.6)-(6.9) to construct the spectrum of the tip displacement

Dtip(f), take the inverse Fourier transform to generate the tip displacement, dtip(t), and distribute

the displacement over the branch according to equation (6.4). The displacement of points in the

layer away from the skeleton is obtained by projecting all pixels orthogonally onto the original

skeleton and using the corresponding displacement.

The user can control the resulting motion appearance by independently changing the mean wind

speed vmean and the natural (oscillatory) frequency fo, mass m, and velocity damping term γ of

each branch.

6.4.3 Water

Water surfaces belong to another class of natural phenomena that exhibit oscillatory responses to

natural forces like wind. In this section we describe how one can specify a water plane in a pho-

tograph and then define the mapping of water height out of that plane to displacements in image

space. We then describe how to synthesize water height variations, again using a spectral method.

The motion skeleton for water is simply a plane; we assume that the image plane is the x-y plane

and the water surface is parallel to the x-z plane. To correctly model the perspective effect, the user

roughly specifies where the plane is. This perspective transformation T can be fully specified by the

focal length and the tilt of the camera, which can be visualized by drawing the horizon [25].

After specifying the water plane, the water is animated using a time-varying height field h(q, t),

where q = (xq, y0, zq) is a point on the water plane. To convert the height field h to the displacement

map Mt(p), for each pixel p we first find its corresponding point, q = (xq, y0, zq) = Tp, on the

water plane. We then add the synthesized height h(q, t) as a vertical displacement, which gives us

a point, q′ = (xq, y0 + h(q, t), zq). We then project q′ back to the image plane to get p′ = T−1q′.

The displacement vector for Mt(p) = p′ − p is therefore

Mt(p) = T−1[Tp + (0, h(Tp, t), 0)]− p . (6.10)

The above model is technically correct if we want to displace objects on the surface of the water.
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In reality, the shimmer in the water is caused by local changes in surface normals. Therefore, a more

physically realistic approach would be to use normal mapping, i.e., to convert the surface normals

computed from the spatial gradients of h(q, t) into two-dimensional displacements. We have found

that our current approach produces pleasing, realistic-looking results but plan to study the more

physically-motivated normal reflection model in the future.

To synthesize a time-varying height field for the water, we use the time-varying wind velocity

discussed in the previous section to synthesize a height field matching the statistics of real waves,

as described by Mastin et al. [56].

The spectrum filter we use for waves is the Phillips spectrum [102], which is a power spectrum

describing the expected square amplitude of waves across all spatial frequencies, s,

Ph(s) ∼
exp

[

−1/ (sη)2
]

s4
|ŝ · v̂mean|2 , (6.11)

where s= ‖s‖, η = v2
mean/g, g is the gravitational constant and ŝ and v̂mean are normalized spatial

frequency and wind direction vectors.

The square root of the power spectrum describes the amplitude of wave heights, which we can

use to filter a random Gaussian noise field,

H0(s) = a
√

Ph(s)G(s) , (6.12)

where a is a constant of proportionality and H0 is an instance of the height field which we can now

animate by introducing time-varying phase. However, waves of different spatial frequencies move at

different speeds. The relationship between the spatial frequency and the phase velocity is described

by the well-known dispersion relation,

w(s) =
√

gs. (6.13)

The time varying height spectrum can thus be expressed as

H(s, t) = H0(s) exp [iw(s)t] + H∗0 (−s) exp{−iw(s)t} , (6.14)

where the H∗0 is the complex conjugate of H0. We can now compute the height field at time, h(q, t)

as the two-dimensional inverse Fourier transform of H(s, t) with respect to spatial frequencies s.
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We take the generated height field and tile the water surface using a scale parameter, τ , to control

the spatial frequency.

There are thus several motion parameters related to water: wind speed, wind direction, the size

of the tile N , the amplitude scale a, and the spatial frequency scale τ . The wind speed and direction

are controlled globally for the whole animation. We find that a tile of size N = 256 usually produces

nice looking results. Users can change a to scale the height of the waves/ripples. Finally, scaling

the frequencies by τ changes the scale at which the wave simulation is being done. Simulating at a

larger frequency scale gives a rougher look, while a smaller scale gives a smoother look. Hence, we

call τ the roughness in our user interface.

6.4.4 Boats

We approximate the motion of a bobbing boat by a 2D rigid transformation composed of a transla-

tion for heaving and a rotation for rolling. A boat moving on the surface of open water is almost

always in oscillatory motion [94]. Hence, the simplest model is to assign a sinusoidal translation

and a sinusoidal rotation. However, this often looks fake. In principle, we could build a simple

model for the boat, convert the height field of water into a force interacting with the hull and solve

the dynamics equation for the boat to estimate its displacement. However, since our goal is only to

synthesize an approximate solution, we directly use the height field of the wave to move the boat,

as follows.

We let the user select a line close to the bottom of the boat in the image. Then, we sample

several pixels along the line. For each pixel pi, we look up its corresponding displaced pixel p′i =

T−1[Tp + (0, h(Tp, t), 0)] as described in the previous section. Finally, we use linear regression to

fit a line through these p′i. The position and orientation of the fitted line then determine the heaving

and rolling of the boat.

6.4.5 Clouds

Another common element for scenic pictures is clouds. In principle, clouds could also be modeled

as a stochastic process. However, we need the stochastic process to match the clouds in the image at

some point, which is harder. Since clouds often move very slowly and their motion does not attract



103

(a) Japanese temple (b) Harbor (c) The Boat Studio (d) Sunflowers

Figure 6.2: Sample input images we animated using our technique. The first two pictures are
photographs of a Japanese Temple (a) and a harbor (b). The rightmost two paintings are Claude
Monet’s painting Le bateau atelier (The Boat Studio) (c) and Van Gogh’s Sunflowers (d).

too much attention, we simply assign a translational motion field to them. As with water, we have

to extend the clouds outside the image frame in some way, since their motion in one direction will

create holes that we have to fill.

6.5 Results

We have applied our system to several photographs and famous paintings (Figure 6.1(a) and 6.2).

Here, we summarize some of the results and discuss some details in creating them.

It takes from several minutes to several hours to animate a picture depending on the complexity

of the input picture. Matting and inpainting is the most time-consuming part in our system and

usually consumes more than 95 percent of the overall time for animating a picture. For example, for

the picture in Figure 6.2(a), because of the complicated structure, it is difficult to specify the trimap

for the branches on the left. Since the background is smooth in color, we end up using a garbage

matte to take out the tree and use inpainting first to estimate the background. Taking advantage

of the known background, the trimap can be painted fairly roughly and matting can be done much

faster as explained in Section 3.3.3. We model a total of 10 branches on the left and the right. We

use a small wave amplitude and high roughness to give the ripples a fine-grained look. For the

harbor picture in Figure 6.2(b), we animate the water and have nine boats swaying with the water.

The cloud and sky are animated using a translational motion field.

Our technique actually works even better with paintings, perhaps because in this situation we
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(a) Composite (b) Lower wind speed

(c) Wind of different direction (d) Rougher water surface

Figure 6.3: An example of controlling the appearance by tuning physical parameters. We can
control the appearance of the water surface by adjusting some physical parameters such as wind
speed. We show one of the composites (a) as the reference, in which the wind blow at 5 m/s in z
direction. We decrease the wind speed to 3 m/s (b) and change the wind direction to be along y axis
(c). Finally, we change the scale of the simulation to render water with finer ripples (d).

are less sensitive to anything that does not look perfectly realistic. Figure 6.1(a) and 6.2(c,d) show

three paintings we have animated. For Claude Monet’s painting in Figure 6.2(c), we animate the

water with lower amplitude roughness to keep the strokes intact. We also let the boat sway with the

water. The other Monet painting shown in Figure 6.1(a) is a more complex example, with more than

20 layers. We use this example to demonstrate that we can change the appearance of the water by

controlling the physical parameters. In Figure 6.3, we show look of the water under different wind

speeds, directions, and simulation scales.

For Van Gogh’s sunflower painting (Figure 6.2(d)), we use our stochastic wind model to animate

40 plant layers. With a simple sinusoidal model, the viewer usually can quickly figure out that the

plants swing in synchrony and the motion looses a lot of its interest. With the stochastic wind model,
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the flowers’ motions de-correlate in phase and the resulting animation is more appealing.

Summary

In this chapter, we have applied Bayesian matting algorithm to an intriguing problem, animating still

pictures for a limited class of scenes—in particular, scenes that contain passive elements responding

to natural forces in an oscillatory fashion. In conclusion, we are pleased by the ease with which it

is possible to breathe life into pictures, based on our Bayesian image matting algorithm, inpainting,

and stochastic modeling algorithms.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have introduced a novel set of composting models and matting meth-

ods which expand the working range of matting and composting in two directions: eliminating the

need for special setups for acquiring foreground plates in traditional matting, and moving beyond

the limitations of the traditional compositing model. We also present a novel application of mat-

ting and compositing to animate still pictures. In particular, this dissertation makes the following

contributions:

• A probabilistic framework for natural image matting. The Bayesian framework intro-

duced in Chapter 2 provides a more principled solution and better results than previous meth-

ods. Solving the natural image matting problem within a probabilistic framework also leads

us to a more general problem setting, Markov Random Fields, where we have proposed a

regularization approach to incorporate smoothness priors into solutions.

• A system for video matting. We have identified and adapted a set of existing algorithms and

devised an overall framework for applying them together to solve the video matting problem

with natural backgrounds. This framework not only reduces the user’s burden of specifying

trimaps but also encourages temporal consistency in the resulting mattes.

• A novel matting algorithm for smoke. With the assumptions of a known background and a

constant foreground color, we have developed a simple but effective method to extract mattes

for flowing, participating media such as smoke.

• A framework for shadow matting and compositing. Based on a simplified lighting frame-

work, we have derived a shadow compositing equation for a single key light. We have also

introduced a set of matting methods to extract shadow mattes and acquire photometric and

geometric properties of the background for making realistic shadow composites.
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• A more accurate model and method for environment matting. We have improved the qual-

ity of environment matting by proposing a parametric model that is simple and compact and

approximates real weighting functions expected for many materials. We have also designed a

practical matting algorithm for estimating the parameters of this model.

• An application of matting and compositing to animating pictures. We have applied our

Bayesian matting algorithm to a novel application, animating pictures. With the help of the

matting algorithm, we are able to synthesize realistic video textures from still photographs

and paintings by augmenting layers with time-varying motion fields.

To sum up, we complete Table 1.1 by filling in our work and follow-on work by others. The

completed Table 7.1 shows a comprehensive categorization of existing compositing models and

matting algorithms. As mentioned in Section 1.3, there is no clear winner in this table. Matting

algorithms often involve making decisions on assumptions about the properties of the foreground

elements, the quality of mattes, the illumination methods, and the number of images required. These

decisions span a rich and interesting design space. We feel we have only just begun to explore this

space. Thus, there are a number of research opportunities for the future.

An improved Bayesian matting algorithm. Although our Bayesian matting algorithm offers im-

provements over previous methods, it has several drawbacks. First, it is not fast enough to provide

instant feedback to the user’s interaction. This makes it difficult to edit trimaps to obtain satisfac-

tory mattes. The current computation bottleneck is sample gathering. A possible way to speed up

this process is to segment the input image into many regions of similar colors and to pre-compute

the color statistics for each region. Second, the onion peel order may not be the best filling order

because it does not take the image content into account. For a similar problem, image inpainting,

Criminisi et al.show that the filling order is crucial [24]. By appropriately arranging the filling order,

results can be dramatically improved. The filling order could be biased toward the pixels that are

on the continuation of edges and whose estimates potentially have higher confidence. For matting,

we could give higher priority to those pixels with higher image gradients, more computed pixels in

their neighborhoods and neighbors that are classified as pure foreground or background.
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Table 7.1: A summary of matting and composting techniques.a We use colors to distinguish our work
from others; dark red for our own work; dark blue for the work before ours; and dark green for the work
after ours.

Traditional matting

and compositing

Shadow matting

and compositing

Environment matting

and compositing

lighting
phenomena

partial coverage
transparency

shadows refraction
reflection

compositing C =αF +(1−α)B

Porter & Duff [69]
C ′=βL′+(1−β)S ′

[Section 4.3]
C =F +

∫

W(x)B(x)dx

Zongker et al. [118]b

m
at

tin
g

pa
ss

iv
e

single
-frame

depth/thermo keying
rotoscoping
Ruzon-Tomasi [76]
Chapter 2
Poisson matting [93]

faux shadow

multiple
-framec

Chapter 3
Wexler [112]

shadow matting
[Section 4.3]

image-Based EM [113]

ac
tiv

e

single
-frame

blue screen matting
difference mattingd

dual-film [6, 29]e
blue screen matting real-time EM [23]

multiple
-frame

O(1): triangulation [88]
O(k):

shadow
scanning
[Section 4.5]

O(log k): Zongker [118]

O(k): Chapter 5

O(k2): wavelet EM [65] f

m
at

te foreground F, α β F, α, W g

background B L, S, w B

a This table is by no means complete; only representative work is listed. For matting algorithms, this table is more a
categorization than a comparison. Because of the assumptions they make, these techniques actually solve related but
somewhat different problems.

b The original environment matting equation proposed by Zongker et al. is slightly less general than the one listed here.
c The algorithms of this category take a sequence of images as input and output either a single matte (image-based EM) or

a sequence of mattes (e.g., video matting in Chapter 3). Because such algorithms usually take advantage of the temporal
coherence within the input sequence, they do not work for a single image.

d While the background is not “controlled” in difference matting, the camera path often has to be controlled for the ease of
obtaining clean plates. Hence, we count it as an active approach.

e This approach essentially requires two frames, but they are taken simultaneously.
f Wavelet EM algorithm is adaptive. The actual number of photographs depends on the reflective/refractive properties of

the objects. However, theoretically, it requires O(k2) images for the worst case when the object is extremely specular.
g The actual information stored in the environment matte W depends on the particular form of the weighting function.
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A more principled solution to natural image matting. We laid out a MRF framework for the

matting problem in Section 2.5. However, to make the problem more tractable, we only solved a

simplified version. There are several possible improvements. First, instead of assuming a quadratic

function, we can allow a more general evidence energy function in equation (2.13) and find the

optimum by using Belief Propagation or Graph Cut algorithms. Second, in Section 2.5, we use a

smoothness prior as the compatibility measurement. It is possible to build the priors by studying

the statistics of ground truth alpha mattes [3]. We can even combine Poisson matting and Bayesian

matting by encoding the AutoKey constraint (equation (1.3)) into the prior. Thus, for every pixel,

we use the discrepancy between the matte gradient and the image gradient as the compatibility

measurement, so that equation (2.12) becomes

L(α, C) =
∑

p∈Ω

EΦ(α(p); p, C) + λ
∑

p∈Ω

(

Oα(p)− 1

F (p)−B(p)
OC(p)

)2

. (7.1)

Note that, because F and B in equation (1.3) are not known yet, we use the gathered F and B as

their approximations. Moreover, F , B and C are vectors and we can use their grayscale versions

for this calculation. Finally, our MRF formulation (equation (2.10)) only solves for the alpha matte.

A better solution should solve for F , B and α simultaneously and exploit their individual priors.

A more efficient interactive segmentation method. The quality of the input trimap is critical

to the success of the Bayesian matting algorithm.1 A considerable amount of user interaction is

required to specify a good trimap and thus usually takes several minutes to accomplish. Hence,

efficient methods for specifying trimaps would make the matting process much easier. Recently,

several efficient foreground extraction methods have been proposed [52, 75, 100, 101]. With only

a few strokes, these methods are capable of isolating a foreground element from its background.

These methods, however, often give a hard segmentation and synthesize a trimap by dilating the

object boundary. This makes it difficult to apply these methods to objects with wide unknown areas.

In addition, these methods actually perform foreground segmentation with a statistical flavor similar

to Bayesian matting. Hence, it should be possible to solve the matting problem with several strokes

in a principled way by combining the strengths of both Bayesian matting and these sketch-based

foreground extraction methods.

1This problem could potentially be alleviated by carefully designing the filling order as mentioned earlier.
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An improved video matting method. The framework we have developed for video matting relies

on accurate optical flow estimation. However, existing optical flow algorithms do not consider the

color blending effects between layers. An optical flow algorithm that incorporates the notion of

blended, complex foreground and background layers could improve flow estimates and allow us to

accumulate foreground and background color distributions temporally as well as spatially.

Our current framework is designed for extracting a single foreground layer. Without background

estimation, this framework can be directly applied to extract multiple layers from the closest to the

furthest. However, we do not expect such a naı̈ve approach to work well because the motions of

multiple dynamic layers will degrade the performance of optical flow algorithms. To improve the

results, we have to estimate the background. If the motions are somewhat rigid, parametric motion

models such as affine transformations could be used to robustly predict the underlying background

when the foreground element crosses other moving elements.

A less restrictive shadow matting and compositing method. Our present shadow matting and

composting method imposes a set of restrictions. Nevertheless, there are several possible ways

to extend the operating range of the shadow matting and compositing method. For example, the

planarity constraints for the source background could be relaxed. For a source scene that is not fully

planar, but has at least a planar segment, we could simply shadow scan the source scene to get its

displacement map relative to its own ground plane, and use this to produce an unwarped (planar)

shadow matte. It would also be useful to have interactive editing tools for adjusting shadow direction

and shape. Such tools could extend the operating range of our technique to cases in which the lights

or reference planes are somewhat misaligned between the source and target scene.

More data points in the environment matting design space. From Table 7.1, an obvious missing

data point for environment matting is a single-frame method for natural backgrounds. Another

general area of future work is to develop more sophisticated tools for extracting environment mattes

of similar quality but requiring fewer images or better quality with the same number of images.

For example, for real-time capture, we could use a more principled Bayesian approach to fitting

matte parameters given noisy image streams. For higher accuracy methods, we could use other

stimulus functions such as Gabor functions to achieve a better matte-quality-to-number-of-image
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ratio. Another promising direction is to employ the Fourier projection slice theorem [48] to capture

an arbitrary weighting function with O(klogk) images.

In this dissertation, we explore creative possibilities in the rich space of matting and composit-

ing. We believe that our work has made matting and compositing more powerful tools and are glad

to see research on matting and compositing starts to flourish.
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Appendix A

ANALYSIS OF THE SHADOW COMPOSITING EQUATION

In Section 4.3, we devised our shadow compositing model based on the occlusion of a single

light source. Here, we use a more general lighting framework to analyze the conditions in which

our model is theoretically correct. For each wavelength, the composite color C at a pixel p can be

written in the form of the rendering equation,

C =

∫

ρωo
(ωi)β(ωi)l(ωi)dωi, (A.1)

where ωo is the fixed viewing direction for pixel p, ρωo
(ωi) is the 2D BRDF for the viewing direction

ωo, and β(ωi) represents the visibility of the incoming radiance l(ωi) at the incident direction ωi,

and the domain of integration is the hemisphere above the visible scene point. The lit image L is

obtained when β(ωi) = 1. Hence,

L =

∫

ρωo
(ωi)l(ωi)dωi, (A.2)

For compositing, we mean to keep the same lighting condition but replace the background with a

scene of the same geometry with a different material. That is, we only intend to replace ρ with ρ′

during compositing. Therefore, the composite color C∗ for the new scene is

C∗ =

∫

ρ′ωo
(ωi)β(ωi)l(ωi)dωi. (A.3)

Note that, because the scene geometry is assumed to be the same in this analysis, the domains

of integration in equations (A.1) and (A.3), i.e., the hemispheres above the visible scene points,

are the same. Ideally, we’d like to record the whole lighting environment so that we can correctly

predict C∗ from C. However, this is difficult if not impossible. Instead, during matting, we sum-

marize the lighting condition with a number β representing the ratio of the incoming radiance to the

maximum radiance. To simplify the discussion, we assume S = 0 in equation (4.2) and S ′ = 0 in

equation (4.5) and these equations become
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C = βL, (A.4)

C ′ = βL′. (A.5)

Since S and S ′ only represent the baseline radiance that we record in the shadow images for both

scenes, it won’t affect our analysis. Under this assumption, dividing L on both sides of equa-

tion (A.4) and replacing C and L with equation (A.1) and equation (A.2), we have

β =
C

L
=

∫

ρωo
(ωi)β(ωi)l(ωi)dωi

∫

ρωo
(ωi)l(ωi)dωi

. (A.6)

Substituting equation (A.6) for β in equation (A.5), we obtain

C ′ = βL′ =

∫

ρωo
(ωi)β(ωi)l(ωi)dωi

∫

ρωo
(ωi)l(ωi)dωi

∫

ρ′ωo
(ωi)l(ωi)dωi. (A.7)

Ideally, the composite color C ′ using the shadow composting equation and the estimated β will

equal C∗, but this is not true in general. Nonetheless, we can show that the composite color C ′ does

equal C∗ for the following cases.

(1) Single point light source. For a point light source of intensity lp at direction ωp, the incoming

radiance l(ωi) equals lpδ(ωi−ωp) and

C ′ =
ρωo

(ωp)β(ωp)lp
ρωo

(ωp)lp
ρ′ωo

(ωp)lp = ρ′ωo
(ωp)β(ωp)lp = C∗. (A.8)

This can be extended to the case when ρωo
and ρ′ωo

are both approximately constant within a

solid angel subtended by an area light source.

(2) Lambertian materials. For Lambertian materials, the BRDF is constant: ρωo
(ωi) = ρ and

ρ′ωo
(ωi) = ρ′. Therefore,

C ′ =
ρ

∫

β(ωi)l(ωi)dωi

ρ
∫

l(ωi)dωi
ρ′

∫

l(ωi)dωi

= ρ′
∫

β(ωi)l(ωi)dωi = C∗. (A.9)

Although pure Lambertian materials are rare, most materials have primarily diffuse compo-

nents, and these components can be modeled by equation (4.2).
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(3) BRDF scaling. If we assume that the source and destination BRDF’s are the same up to a

scale factor, i.e., ρ′ωo
(ωi) = kρωo

(ωi), then we have

C ′ =

∫

ρωo
(ωi)β(ωi)l(ωi)dωi

∫

ρωo
(ωi)l(ωi)dωi

∫

kρωo
(ωi)l(ωi)dωi

= k

∫

ρωo
(ωi)β(ωi)l(ωi)dωi

=

∫

ρ′ωo
(ωi)β(ωi)l(ωi)dωi = C∗. (A.10)

This case could arise when performing background edits. For example, we could replace a

background image of white paper with paper painted with text.

The above analysis assumes an ideal per-channel camera spectral sensitivity function, ϕ(λ) =

δ(λ−λ′), where λ′ is the only wavelength the camera responds to for that channel. However,

in reality, the response of a camera is integrated over a spectrum. Hence, for a general spectral

sensitivity function, the camera observation becomes

C =

∫ ∫

ϕ(λ)ρωo
(ωi, λ)β(ωi)l(ωi, λ)dωidλ, (A.11)

and the results for the latter two cases (2) and (3) do not hold anymore. However, if l(ωi, λ) is

separable, i.e., l(ωi, λ) = l(ωi)l(λ), then the result for case (2) holds. (l(ωi, λ) is separable when

all the light sources are of the same kind.) That is, our shadow compositing model is correct if the

background is diffuse and the lights are of the same kind. This probably explains why the result of

Figure 4.7(a) looks realistic.
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