
A Bayesian Approach to Digital Matting

Yung-Yu Chuang1 Brian Curless1 David H. Salesin1,2 Richard Szeliski2

1Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195
2Microsoft Research, Redmond, WA 98052

E-mail: {cyy, curless, salesin}@cs.washington.edu szeliski@microsoft.com
http://grail.cs.washington.edu/projects/digital-matting/

Abstract

This paper proposes a new Bayesian framework for solving
the matting problem, i.e. extracting a foreground element from
a background image by estimating an opacity for each pixel
of the foreground element. Our approach models both the
foreground and background color distributions with spatially-
varying sets of Gaussians, and assumes a fractional blending
of the foreground and background colors to produce the final
output. It then uses a maximum-likelihood criterion to esti-
mate the optimal opacity, foreground and background simul-
taneously. In addition to providing a principled approach to
the matting problem, our algorithm effectively handles objects
with intricate boundaries, such as hair strands and fur, and
provides an improvement over existing techniques for these
difficult cases.

1. Introduction
In digital matting, a foreground element is extracted from a
background image by estimating a color and opacity for the
foreground element at each pixel. The opacity value at each
pixel is typically called its alpha, and the opacity image, taken
as a whole, is referred to as the alpha matte or key. Fractional
opacities (between 0 and 1) are important for transparency
and motion blurring of the foreground element, as well as for
partial coverage of a background pixel around the foreground
object’s boundary.

Matting is used in order to composite the foreground ele-
ment into a new scene. Matting and compositing were origi-
nally developed for film and video production [4], where they
have proven invaluable. Nevertheless, “pulling a matte” is
still somewhat of a black art, especially for certain notoriously
difficult cases such as thin whisps of fur or hair. The prob-
lem is difficult because it is inherently underconstrained: for a
foreground element over a single background image there are
in general an infinite number of interpretations for the fore-
ground’s color versus opacity.

In practice, it is still possible to pull a satisfactory matte in
many cases. One common approach is to use a background
image of known color (typically blue or green) and make cer-
tain assumptions about the colors in the foreground (such as
the relative proportions of red, green, and blue at each pixel);
these assumptions can then be tuned by a human operator.

Other approaches attempt to pull mattes from natural (arbi-
trary) backgrounds, using statistics of known regions of fore-
ground or background in order to estimate the foreground and
background colors along the boundary. Once these colors are
known, the opacity value is uniquely determined.

In this paper, we survey the most successful previous ap-
proaches to digital matting—all of them fairly ad hoc—and
demonstrate cases in which each of them fails. We then in-
troduce a new, more principled approach to matting, based
on a Bayesian framework. While no algorithm can give per-
fect results in all cases (given that the problem is inherently
underconstrained), our Bayesian approach appears to give im-
proved results in each of these cases.

2. Background
As already mentioned, matting and compositing were origi-
nally developed for film and video production. In 1984, Porter
and Duff [8] introduced the digital analog of the matte—the
alpha channel—and showed how synthetic images with alpha
could be useful in creating complex digital images. The most
common compositing operation is the over operation, which
is summarized by the compositing equation:

C = αF + (1 − α)B , (1)

where C, F , and B are the pixel’s composite, foreground,
and background colors, respectively, and α is the pixel’s opac-
ity component used to linearly blend between foreground and
background.

The matting process starts from a photograph or set of pho-
tographs (essentially composite images) and attempts to ex-
tract the foreground and alpha images. Matting techniques
differ primarily in the number of images and in what a pri-
ori assumptions they make about the foreground, background,
and alpha.

Blue screen matting was among the first techniques used
for live action matting. The principle is to photograph the sub-
ject against a constant-colored background, and extract fore-
ground and alpha treating each frame in isolation. This sin-
gle image approach is underconstrained since, at each pixel,
we have three observations and four unknowns. Vlahos pi-
oneered the notion of adding simple constraints to make the
problem tractable; this work is nicely summarized by Smith



and Blinn [11]. For example, under the assumption that
.5 ≤ a2 ≤ Fb ≤ a2Fg , Vlahos constrained the set of equa-
tions with:

α = 1 − a1(Cb − a2Cg) , (2)

where Cb and Cg are the blue and green channels of the input
image, respectively, and a1 and a2 are user-controlled tuning
parameters. Additional constraint equations such as this one,
however, while easy to implement, are ad hoc, require an ex-
pert to tune them, and can fail on fairly simple foregrounds.

More recently, Mishima [5] developed a blue screen mat-
ting technique based on representative foreground and back-
ground samples (Figure 1(e)). In particular, the algorithm
starts with two identical polyhedral (triangular mesh) approx-
imations of a sphere in rgb space centered at the average value
B of the background samples. The vertices of one of the poly-
hedra (the background polyhedron) are then repositioned by
moving them along lines radiating from the center until the
polyhedron is as small as possible while still containing all
the background samples. The vertices of the other polyhedron
(the foreground polyhedron) are similarly adjusted to give the
largest possible polyhedron that contains no foreground pix-
els from the sample provided. Given a new composite color
C, then, Mishima casts a ray from B through C and defines
the intersections with the background and foreground polyhe-
dra to be B and F , respectively. The fractional position of C
along the line segment BF is α.

Under some circumstances, it might be possible to photo-
graph a foreground object against a known but non-constant
background. One simple approach for handling such a scene
is to take a difference between the photograph and the known
background and determine α to be 0 or 1 based on an arbitrary
threshold. This approach, known as difference matting (see,
e.g., [9]) is error prone and leads to “jagged” mattes. Smooth-
ing such mattes by blurring can help with the jaggedness but
does not generally compensate for gross errors.

One limitation of blue screen and difference matting is
the reliance on a controlled environment or imaging scenario
that provides a known, possibly constant-colored background.
The more general problem of extracting foreground and al-
pha from relatively arbitrary photographs or video streams is
known as natural image matting. To our knowledge, the two
most successful natural image matting systems are Knockout,
developed by Ultimatte (and, to the best of our knowledge, de-
scribed in patents by Berman et al. [1, 2]), and the technique
of Ruzon and Tomasi [10]. In both cases, the process begins
by having a user segment the image into three regions: def-
initely foreground, definitely background, and unknown (as
illustrated in Figure 1(a)). The algorithms then estimate F ,
B, and α for all pixels in the unknown region.

For Knockout, after user segmentation, the next step is to
extrapolate the known foreground and background colors into
the unknown region. In particular, given a point in the un-
known region, the foreground F is calculated as a weighted

sum of the pixels on the perimeter of the known foreground
region. The weight for the nearest known pixel is set to 1, and
this weight tapers linearly with distance, reaching 0 for pixels
that are twice as distant as the nearest pixel. The same proce-
dure is used for initially estimating the background B ′ based
on nearby known background pixels. Figure 1(b) shows a set
of pixels that contribute to the calculation of F and B ′ of an
unknown pixel.

The estimated background color B′ is then refined to give
B using one of several methods [2] that are all similar in char-
acter. One such method establishes a plane through the esti-
mated background color with normal parallel to the line B ′F .
The pixel color in the unknown region is then projected along
the direction of the normal onto the plane, and this projection
becomes the refined guess for B. Figure 1(f) illustrates this
procedure.

Finally, Knockout estimates α according to the relation

α =
f(C) − f(B)

f(F ) − f(B)
, (3)

where f(·) projects a color onto one of several possible axes
through rgb space (e.g., onto one of the r-, g-, or b- axes).
Figure 1(f) illustrates alphas computed with respect to the r-
and g- axes. In general, α is computed by projection onto all
of the chosen axes, and the final α is taken as a weighted sum
over all the projections, where the weights are proportional to
the denominator in equation (3) for each axis.

Ruzon and Tomasi [10] take a probabilistic view that is
somewhat closer to our own. First, they partition the unknown
boundary region into sub-regions. For each sub-region, they
construct a box that encompasses the sub-region and includes
some of the nearby known foreground and background re-
gions (see Figure 1(c)). The encompassed foreground and
background pixels are then treated as samples from distribu-
tions P (F ) and P (B), respectively, in color space. The fore-
ground pixels are split into coherent clusters, and unoriented
Gaussians (i.e., Gaussians that are axis-aligned in color space)
are fit to each cluster, each with mean F and diagonal covari-
ance matrix ΣF . In the end, the foreground distribution is
treated as a mixture (sum) of Gaussians. The same procedure
is performed on the background pixels yielding Gaussians,
each with mean B and covariance ΣB , and then every fore-
ground cluster is paired with every background cluster. Many
of these pairings are rejected based on various “intersection”
and “angle” criteria. Figure 1(g) shows a single pairing for a
foreground and background distribution.

After building this network of paired Gaussians, Ruzon
and Tomasi treat the observed color C as coming from an in-
termediate distribution P (C), somewhere between the fore-
ground and background distributions. The intermediate dis-
tribution is also defined to be a sum of Gaussians, where each
Gaussian is centered at a distinct mean value C located frac-
tionally (according to a given alpha) along a line between the
mean of each foreground and background cluster pair with
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Figure 1 Summary of algorithms. Each of the algorithms shown in this figure requires some specification of background and foreground
pixels. Mishima’s algorithm (a) uses these samples to form a global distribution, whereas Knockout (b), Ruzon-Tomasi (c), and our
new Bayesian approach (d) analyze unknown pixels using local distributions. The dark gray area in (c) corresponds to a segment within
the unknown region that will be evaluated using the statistics derived from the square region’s overlap with the labeled foreground and
background. Figures (e)-(h) show how matte parameters are computed using the Mishima, Knockout, Ruzon-Tomasi, and our Bayesian
approach, respectively.

fractionally interpolated covariance ΣC , as depicted in Fig-
ure 1(g). The optimal alpha is the one that yields an inter-
mediate distribution for which the observed color has maxi-
mum probability; i.e., the optimal α is chosen independently
of F and B. As a post-process, the F and B are computed
as weighted sums of the foreground and background cluster
means using the individual pairwise distribution probabilities
as weights. The F and B colors are then perturbed to force
them to be endpoints of a line segment passing through the
observed color and satisfying the compositing equation.

Both the Knockout and the Ruzon-Tomasi techniques can
be extended to video by hand-segmenting each frame, but
more automatic techniques are desirable for video. Mit-
sunaga et al. [6] developed the AutoKey system for extract-
ing foreground and alpha mattes from video, in which a
user seeds a frame with foreground and background con-
tours, which then evolve over time. This approach, however,
makes strong smoothness assumptions about the foreground
and background (in fact, the extracted foreground layer is as-
sumed to be constant near the silhouette) and is designed for
use with fairly hard edges in the transition from foreground
to background; i.e., it is not well-suited for transparency and
hair-like silhouettes.

In each of the cases above, a single observation of a pixel
yields an underconstrained system that is solved by building
spatial distributions or maintaining temporal coherence. Wal-

lace [12] provided an alternative solution that was indepen-
dently (and much later) developed and refined by Smith and
Blinn [11]: take an image of the same object in front of mul-
tiple known backgrounds. This approach leads to an overcon-
strained system without building any neighborhood distribu-
tions and can be solved in a least-squares framework. While
this approach requires even more controlled studio conditions
than the single solid background used in blue screen matting
and is not immediately suitable for live-action capture, it does
provide a means of estimating highly accurate foreground and
alpha values for real objects. We use this method to provide
ground-truth mattes when making comparisons.

3. Our Bayesian framework

For the development that follows, we will assume that our
input image has already been segmented into three regions:
“background,” “foreground,” and “unknown,” with the back-
ground and foreground regions having been delineated con-
servatively. The goal of our algorithm, then, is to solve for
the foreground color F , background color B, and opacity α
given the observed color C for each pixel within the unknown
region of the image. Since F , B, and C have three color chan-
nels each, we have a problem with three equations and seven
unknowns.

Like Ruzon and Tomasi [10], we will solve the problem
in part by building foreground and background probability



distributions from a given neighborhood. Our method, how-
ever, uses a continuously sliding window for neighborhood
definitions, marches inward from the foreground and back-
ground regions, and utilizes nearby computed F , B, and α
values (in addition to these values from “known” regions) in
constructing oriented Gaussian distributions, as illustrated in
Figure 1(d). Further, our approach formulates the problem
of computing matte parameters in a well-defined Bayesian
framework and solves it using the maximum a posteriori
(MAP) technique. In this section, we describe our Bayesian
framework in detail.

In MAP estimation, we try to find the most likely estimates
for F , B, and α, given the observation C. We can express this
as a maximization over a probability distribution P and then
use Bayes’s rule to express the result as the maximization over
a sum of log likelihoods:

arg max
F,B,α

P (F, B, α |C) (4)

= arg max
F,B,α

P (C |F, B, α) P (F ) P (B) P (α) / P (C)

= arg max
F,B,α

L(C |F, B, α) + L(F ) + L(B) + L(α) ,

where L(·) is the log likelihood L(·) = log P (·), and we drop
the P (C) term because it is a constant with respect to the opti-
mization parameters. (Figure 1(h) illustrates the distributions
over which we solve for the optimal F , B, and α parameters.)

The problem is now reduced to defining the log likelihoods
L(C |F, B, α), L(F ), L(B), and L(α).

We can model the first term by measuring the difference
between the observed color and the color that would be pre-
dicted by the estimated F , B, and α:

L(C |F, B, α) = −‖C − αF − (1 − α)B‖2/σ2

C . (5)

This log-likelihood models error in the measurement of C and
corresponds to a Gaussian probability distribution centered at
C = αF + (1 − α)B with standard deviation σC .

We use the spatial coherence of the image to estimate the
foreground term L(F ). That is, we build the color proba-
bility distribution using the known and previously estimated
foreground colors within each pixel’s neighborhood N . To
more robustly model the foreground color distribution, we
weight the contribution of each nearby pixel i in N accord-
ing to two separate factors. First, we weight the pixel’s con-
tribution by α2

i , which gives colors of more opaque pixels
higher confidence. Second, we use a spatial Gaussian fall-
off gi with σ = 8 to stress the contribution of nearby pixels
over those that are further away. The combined weight is then
wi = α2

i gi.
Given a set of foreground colors and their corresponding

weights, we first partition colors into several clusters using
the method of Orchard and Bouman [7]. For each cluster,
we calculate the weighted mean color F and the weighted

covariance matrix ΣF :

F =
1

W

∑

i∈N

wi Fi (6)

ΣF =
1

W

∑

i∈N

wi (Fi − F ) (Fi − F )
T

(7)

where W =
∑

i∈N wi. The log likelihoods for the foreground
L(F ) can then be modeled as being derived from an oriented
elliptical Gaussian distribution, using the weighted covariance
matrix as follows:

L(F ) = −(F − F )
T

Σ−1

F (F − F ) / 2 . (8)

The definition of the log likelihood for the background
L(B) depends on which matting problem we are solving. For
natural image matting, we use an analogous term to that of
the foreground, setting wi to (1 − αi)

2gi and substituting B
in place of F in every term of equations (6), (7), and (8).
For constant-color matting, we calculate the mean and covari-
ance for the set of all pixels that are labelled as background.
For difference matting, we have the background color at each
pixel; we therefore use the known background color as the
mean and a user-defined variance to model the noise of the
background.

In this work, we assume that the log likelihood for the
opacity L(α) is constant (and thus omitted from the maxi-
mization in equation (4)). A better definition of L(α) derived
from statistics of real alpha mattes is left as future work.

Because of the multiplications of α with F and B in the log
likelihood L(C |F, B, α), the function we are maximizing in
(4) is not a quadratic equation in its unknowns. To solve the
equation efficiently, we break the problem into two quadratic
sub-problems. In the first sub-problem, we assume that α is a
constant. Under this assumption, taking the partial derivatives
of (4) with respect to F and B and setting them equal to 0
gives:
[

Σ−1

F + Iα2/σ2

C Iα(1 − α)/σ2

C

Iα(1 − α)/σ2

C Σ−1

B + I(1 − α)2/σ2

C

] [

F
B

]

=

[

Σ−1

F F + Cα/σ2

C

Σ−1

B B + C(1 − α)/σ2

C

]

, (9)

where I is a 3×3 identity matrix. Therefore, for a constant α,
we can find the best parameters F and B by solving the 6× 6
linear equation (9).

In the second sub-problem, we assume that F and B are
constant, yielding a quadratic equation in α. We arrive at the
solution to this equation by projecting the observed color C
onto the line segment FB in color space:

α =
(C − B) · (F − B)

‖F − B‖2
. (10)

where the numerator contains a dot product between two color
difference vectors. To optimize the overall equation (4) we



alternate between assuming that α is fixed to solve for F and
B using (9), and assuming that F and B are fixed to solve for
α using (10). To start the optimization, we initialize α with
the mean α over the neighborhood of nearby pixels and then
solve the constant-α equation (9).

When there is more than one foreground or background
cluster, we perform the above optimization procedure for each
pair of foreground and background clusters and choose the
pair with the maximum likelihood. Note that this model, in
contrast to a mixture of Gaussians model, assumes that the
observed color corresponds to exactly one pair of foreground
and background distributions. In some cases, this model is
likely to be the correct model, but we can certainly conceive
of cases where mixtures of Gaussians would be desirable, say,
when two foreground clusters can be near one another spa-
tially and thus can mix in color space. Ideally, we would like
to support a true Bayesian mixture model. In practice, even
with our simple exclusive decision model, we have obtained
better results than the existing approaches.

4. Results and comparisons
We tried out our Bayesian approach on a variety of differ-
ent input images, both for blue-screen and for natural image
matting. Figure 2 shows four such examples. In the rest of
this section, we discuss each of these examples and provide
comparisons between the results of our algorithm and those
of previous approaches. For more results and color images,
please visit the URL listed under the title.

4.1. Blue-screen matting

We filmed our target object, a stuffed lion, in front of a com-
puter monitor displaying a constant blue field. In order to ob-
tain a ground-truth solution, we also took radiance-corrected,
high dynamic range [3] pictures of the object in front of five
additional constant-color backgrounds. The ground-truth so-
lution was derived from these latter five pictures by solving
the overdetermined linear system of compositing equations
(1) using singular value decomposition.

Both Mishima’s algorithm and our Bayesian approach re-
quire an estimate of the background color distribution as in-
put. For blue-screen matting, a preliminary segmentation can
be performed more-or-less automatically using the Vlahos
equation (2) from Section 2. Setting a1 to be a large number
generally gives regions of pure background (where α ≤ 0),
while setting a1 to a small number gives regions of pure fore-
ground (where α ≥ 1). The leftmost image in the middle row
of Figure 2 shows the preliminary segmentation produced in
this way, which was used as input for both Mishima’s algo-
rithm and our Bayesian approach.

In Figure 3, we compare our results with Mishima’s al-
gorithm and with the ground-truth solution. Mishima’s algo-
rithm exhibits obvious “blue spill” artifacts around the bound-
ary, whereas our Bayesian approach gives results that appear

to be much closer to the ground truth.

4.2. Natural image matting

Figure 4 provides an artificial example of “natural image mat-
ting,” one for which we have a ground-truth solution. The in-
put image was produced by taking the ground-truth solution
for the previous blue-screen matting example, compositing it
over a (known) checkerboard background, displaying the re-
sulting image on a monitor, and then re-photographing the
scene. We then attempted to use four different approaches for
re-pulling the matte: a simple difference matting approach
(which takes the difference of the image from the known
background, thresholds it, and then blurs the result to soften
it); Knockout; the Ruzon and Tomasi algorithm, and our
Bayesian approach. The ground-truth result is repeated here
for easier visual comparison. Note the checkerboard artifacts
that are visible in Knockout’s solution. The Bayesian ap-
proach gives mattes that are somewhat softer, and closer to
the ground truth, than those of Ruzon and Tomasi.

Figure 5 repeats this comparison for two (real) natural im-
ages (for which no difference matting or ground-truth solution
is possible). Note the missing strands of hair in the close-up
for Knockout’s results. The Ruzon and Tomasi result has a
discontinuous hair strand on the left side of the image, as well
as a color discontinuity near the center of the inset. In the
lighthouse example, both Knockout and Ruzon-Tomasi suffer
from background spill. For example, Ruzon-Tomasi allows
the background to blend through the roof at the top center of
the composite inset, while Knockout loses the railing around
the lighthouse almost completely. The Bayesian results ex-
hibit none of these artifacts.

5. Conclusions
In this paper, we have developed a Bayesian approach to solv-
ing several image matting problems: constant-color matting,
difference matting, and natural image matting. Though shar-
ing a similar probabilistic view with Ruzon and Tomasi’s al-
gorithm, our approach differs from theirs in a number of key
aspects; namely, it uses (1) MAP estimation in a Bayesian
framework to optimize α, F and B simultaneously, (2) ori-
ented Gaussian covariances to better model the color distribu-
tions, (3) a sliding window to construct neighborhood color
distributions that include previously computed values, and (4)
a scanning order that marches inward from the known fore-
ground and background regions. To sum up, our approach
has an intuitive probabilistic motivation, is relatively easy to
implement, and compares favorably with the state of the art in
matte extraction.

In the future, we hope to explore a number of research di-
rections. So far, we have omitted using priors on alpha. We
hope to build these priors by studying the statistics of ground
truth alpha mattes, possibly extending this analysis to evalu-
ate spatial dependencies that might drive an MRF approach
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Figure 2 Summary of input images and results. Input images (top row): a blue-screen matting example of a toy lion, a synthetic
“natural image” of the same lion (for which the exact solution is known), and two real natural images, (a lighthouse and a woman). Input
segmentation (middle row): conservative foreground (white), conservative background (black), and “unknown” (grey). The leftmost
segmentation was computed automatically (see text), while the rightmost three were specified by hand. Compositing results (bottom row):
the results of compositing the foreground images and mattes extracted through our Bayesian matting algorithm over new background
scenes. (Lighthouse image and the background images in composite courtesy Philip Greenspun, http://philip.greenspun.com. Woman
image was obtained from Corel Knockout’s tutorial, Copyright c© 2001 Corel. All rights reserved.)
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Alpha Matte Composite Inset

Figure 3 Blue-screen matting of lion (taken from leftmost column of Figure 2). Mishima’s results in the top row suffer from “blue spill.”
The middle and bottom rows show the Bayesian result and ground truth, respectively.
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Alpha Matte Composite Inset

Figure 4 “Synthetic” natural image matting. The top row shows the results of difference image matting and blurring on the synthetic
composite image of the lion against a checkerboard (column second from left in Figure 2). Clearly, difference matting does not cope
well with fine strands. The second row shows the result of applying Knockout; in this case, the interpolation algorithm poorly estimates
background colors that should be drawn from a bimodal distribution. The Ruzon-Tomasi result in the next row is clearly better, but
exhibits a significant graininess not present in the Bayesian matting result on the next row or the ground-truth result on the bottom row.
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Figure 5 Natural image matting. These two sets of photographs correspond to the rightmost two columns of Figure 2, and the insets
show both a close-up of the alpha matte and the composite image. For the woman’s hair, Knockout loses strands in the inset, whereas
Ruzon-Tomasi exhibits broken strands on the left and a diagonal color discontinuity on the right, which is enlarged in the inset. Both
Knockout and Ruzon-Tomasi suffer from background spill as seen in the lighthouse inset, with Knockout practically losing the railing.

to image matting. Next, we hope to extend our framework
to support mixtures of Gaussians in a principled way, rather
than arbitrarily choosing among paired Gaussians as we do
currently. Finally, we plan to extend our work to video mat-
ting with soft boundaries.
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