4／20 Scribe

§ Structure from Motion

Problem Statement：

－Given video sequence，want to find out parameters of camera or 3D structures of an object or a scene．

What to solve？

－Camera Parameters or 3D Structures．
［Note］Match Move using Camera Calibration could get the most accuracy， however not easy to implement．
is Basic Technique：SVD（Singular Value Decomposition）
Given $b(\mathrm{~m} \times 1)$ ：
$b(\mathrm{~m} \times 1)=A(\mathrm{~m} \times \mathrm{n}) X(\mathrm{n} \times 1) \rightarrow$ Transformation of \mathbf{n} dimension to \mathbf{m} dimension．Ex．2D to 3D
［Note］the scaling may be anisotropic scaling．
If $A(\mathrm{~m} \times \mathrm{n}) \rightarrow A=U \Sigma V^{T}$
，where $\mathrm{U}(\mathrm{m} \times \mathrm{m}), \mathrm{V}(\mathrm{n} \times \mathrm{n})$ are both orthonormal matrices and Σ is the $\mathrm{m} \times \mathrm{n}$ diagonal matrix．
We can view the above system as：
V and Σ are for rotation (V) and scaling (Σ) transformation on \mathbf{n} dimension，while U is for rotation transformation on \mathbf{m} dimension．（Illustrated below）

\diamond To solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we'd like to find out the min norm least squares solution to

$$
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|
$$

As a result, we need to look for the minimum of $\left\|\boldsymbol{A}-\boldsymbol{A}^{\boldsymbol{\prime}}\right\|$, where $\operatorname{rank}\left(\boldsymbol{A}^{\prime}\right)=\mathrm{r}<\operatorname{rank}(\boldsymbol{A})$, [Note] Why do we find SVD?
\because A maybe affected by noise, such that it seems full-rank, while actually it isn't.
$\rightarrow A^{\prime}=V \Sigma^{\dagger} U^{T}$, and

$\boldsymbol{A}^{\boldsymbol{\prime}}$ is the pseudoinverse of \boldsymbol{A}.
Therefore $\quad \hat{\mathbf{x}}=V \Sigma^{\dagger} U^{T} \mathbf{b}$ is the solution to $\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|$.
\diamond Important Applications of SVD:
a) Given one linear over-constrained matrix, find $\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|$
b) Look for \boldsymbol{A}^{\prime} with regard to \boldsymbol{A}, such that $\operatorname{rank}\left(\boldsymbol{A}^{\prime}\right)<\operatorname{rank}(\boldsymbol{A})$.
is Epipolar Geometry and Fundamental Matrix
The Geometry of the real object and camera positions:

X: object position; C,C' : cameras; x: projection of X captured by C; x': projection of X captured by C'
\rangle Expression of Epipolar pole, line, plane:
epipolar pole
= intersection of baseline with image plane
$=$ projection of projection center in other image
epipolar plane $=$ plane containing baseline
epipolar line $=$ intersection of epipolar plane with image

If only C, C^{\prime}, x are known...

\rightarrow x' must lie on the epipolar line of the image plane determined by C', [Note] Ex: Suppose there are 2 frames capturing the same object in different orientations, once we have the epipolar lines, to find the corresponding positions of some particular point in Frame1\&2, the only positions we need to search from are only on the epipolar lines.

Family of planes π and lines land l'intersects on epipolar poles e and e '.
\diamond Let
$\mathrm{p}=$ line of sight connecting X and $\mathrm{C}(\mathrm{X}-\mathrm{C})$,
$\mathrm{p}^{\prime}=$ line of sight connecting X and $\mathrm{C}^{\prime}\left(\mathrm{X}-\mathrm{C}^{\prime}\right)$, and $\mathrm{T}=\mathrm{C}^{\prime}-\mathrm{C}$

$\rightarrow \mathrm{p}^{\prime}=\mathrm{R}(\mathrm{p}-\mathrm{T})$, and $\because \mathrm{X}, \mathrm{C}, \mathrm{C}^{\prime}$ are coplanar
$\rightarrow(\mathbf{p}-\mathbf{T})^{\mathrm{T}}(\mathbf{T} \times \mathbf{p})=0$
$\rightarrow\left(\mathbf{R}^{\mathrm{T}} \mathbf{p}^{\prime}\right)^{\mathrm{T}}(\mathbf{T} \times \mathbf{p})=0$
\rightarrow

$$
\begin{aligned}
\left(\mathbf{R}^{\mathrm{T}} \mathbf{p}^{\prime}\right)^{\mathrm{T}}(\mathbf{T} & \times \mathbf{p})=0 \\
& \mathbf{T} \times \mathbf{p}=\mathbf{S p} \\
& \mathbf{S}=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right] \quad
\end{aligned} \quad \begin{array}{ll}
& \left(\mathbf{R}^{\mathrm{T}} \mathbf{p}^{\prime}\right)^{\mathrm{T}}(\mathbf{S p})=0 \\
\left.\mathbf{p}^{\mathrm{T}} \mathbf{R}\right)(\mathbf{S} \mathbf{p})=0 \\
\mathbf{p}^{\prime \mathrm{T}} \mathbf{E} \mathbf{p}=0
\end{array}
$$

Therefore we get: $\mathbf{p}^{\prime \mathrm{T}} \mathbf{E p}=0$
Let \mathbf{M} and \mathbf{M}^{\prime} be the intrinsic parameters, then

$$
\begin{equation*}
\mathbf{p}=\mathbf{M}^{-1} \mathbf{x} \quad \mathbf{p}^{\prime}=\mathbf{M}^{\prime-1} \mathbf{x}^{\prime} \tag{2}
\end{equation*}
$$

(2) substitute into (1), we get: $\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0$, where $\mathbf{F}=\mathbf{M}^{\prime^{-\mathrm{T}}} \mathbf{E} \mathbf{M}^{-1}$

F is the unique 3×3 rank 2 matrix that satisfies $\mathrm{X}^{\top} \mathrm{F} \mathrm{Fx}=0$ for all $\mathrm{x} \leftrightarrow \mathrm{x}$.
Given 2 images, if we can find the Fundamental Matrix F (note: $\operatorname{rank}(F)=2$ with 7 degrees of freedom) \rightarrow we know where x in Frame\#1 maps to the Frame\#2

Solving F such that $\mathbf{x}^{\mathrm{T}} \mathbf{F} \mathbf{x}=0$
Let $\mathbf{x}=(u, v, 1)^{\top}, \mathbf{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}$

$$
\mathbf{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

For each match:

$$
u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0
$$

[Note] $\because \operatorname{rank}(F)=2$, we let $f_{33}=1$ and therefore we need only $\underline{8 \text { equations } \text { to solve }}$ the linear system $A f=0$.

$$
\left[\begin{array}{ccccccccc}
u_{1} u_{1}^{\prime} & v_{1} u_{1}^{\prime} & u_{1}^{\prime} & u_{1} v_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1}^{\prime} & u_{1} & v_{1} & 1 \\
u_{2} u_{2}^{\prime} & v_{2} u_{2}^{\prime} & u_{2}^{\prime} & u_{2} v_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2}^{\prime} & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n} u_{n}^{\prime} & v_{n} u_{n}^{\prime} & u_{n}^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}^{\prime} & u_{n} & v_{n} & 1
\end{array}\right]\left[\begin{array}{c}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0
$$

Instead of solving $\mathbf{A f}=\mathbf{0}$, we seek f to minimize $\|\mathbf{A f}\|$.
Note that F is of rank 2 , so we replace F by F^{\prime} that minimizes $\left\|F-F^{\prime}\right\|, \operatorname{det}\left(F^{\prime}\right)=0$

- Find F' using SVD!

$$
\rightarrow \mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}} \text { is the solution. }
$$

Though this " 8 point algorithm" is linear and easy to implement, it is susceptible to noise because the orders of magnitude difference between column of data matrix are so large that least-squares yields poor results.
Therefore, we normalize the image size to be within $[-1,-1] \sim[1,1]$, shown as below:

so that values of all u, v 's would lie in $[-1,1] \rightarrow$ least-squares yields good result!

Now that we know how to solve for the fundamental matrix F, we could use RANSAC algorithm to repeatedly estimate the F to get the one with the largest portion of inliers!
\& Structure from Motion
\diamond The Idea: automatic recovery of camera motion and scene structure from two or more images. It is a self calibration technique and called automatic camera tracking or matchmoving.
\diamond Pipeline:

Step1: Track Features
Detect good and representing features, find correspondence points between frames.
Step2: Estimate Motion and Structures
Step3: Refine Estimate (Ex. Bundle Adjustment)
Step4: Use the Result from above to recover the surfaces

[Note]

1. Bundle Adjustment needs good initial guess.
2. SIFT does not do the tracking. We could utilize the KLT tracking.
3. Assume the scene captured by cameras is still.
4. The estimation of lens distortion is very important to the recover of 3D structures.
5. There are track life time for certain features, i.e. missing data.

A Factorization Method
\diamond Idea: Given the 3D scene, and pictures are taken around the object, we'd like to recover the projection matrix and functions of 3D scene to the pictures.

$$
\mathbf{q}_{i j}=\pi\left(\Pi_{j} \mathbf{p}_{i}\right)
$$

, p: 3D scene point, $\mathrm{q}: 2 \mathrm{D}$ image point, Π : projection matrix, π : projection function , j : jth image, i : ith point
The above equation could be reduced to:

$$
2 \times 1 \quad 2 \times 3 \quad 3 \times 1 \quad 2 \times 1
$$

and with the trick of moving the origin to the centroid of the 3D \& 2D points, we get

$\mathbf{q}=\Pi \mathbf{p}$

\rightarrow
projection of n features in m images

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
\mathbf{q}_{11} & \mathbf{q}_{12} & \cdots & \mathbf{q}_{1 n} \\
\mathbf{q}_{21} & \mathbf{q}_{22} & \cdots & \mathbf{q}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{q}_{m 1} & \mathbf{q}_{m 2} & \cdots & \mathbf{q}_{m n} \\
2 \mathrm{~m} \times \mathbf{n}
\end{array}\right.}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\Pi}_{1} \\
\boldsymbol{\Pi}_{2} \\
\vdots \\
\mathbf{\Pi}_{m}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}
\end{array}\right]
$$

$$
\mathrm{W}_{\text {measurement }} \quad \mathrm{M}_{\text {motion }} \quad \mathrm{S}_{\text {shape }} \quad \text { [Note] } \operatorname{rank}(W)<=3
$$

Now we know the relation between measurement and shape, and the measurement \mathbf{W} are known, therefore we need to solve for \mathbf{M}, \mathbf{S}
\rightarrow use $\boldsymbol{S V D}$ to decompose \mathbf{W} !

$$
\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}}=\underset{2 \mathrm{~m} \times 3}{\mathbf{M} \times \mathbf{S}^{\prime} \times \mathrm{n}} \rightarrow \mathbf{W}=\mathbf{M}^{\prime} \mathbf{S}^{\prime}=\left(\mathbf{M A} \mathbf{A}^{-1}\right)(\mathbf{A S})
$$

and with the constraint: $\mathbf{M}^{\prime} \mathbf{A}=\mathbf{M}$, we could solve for \mathbf{A} :
If affected by noise:
$\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}}=\underset{2 \mathrm{~m} \times 3}{\mathbf{M}} \underset{3 \times \mathrm{n}}{\mathbf{S}}+\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{E}}$
\rightarrow SVD gives this solution

- Provides optimal rank 3 approximation \mathbf{W}^{\prime} of \mathbf{W}

$$
\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}}=\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}^{\prime}}+\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{E}}
$$

$\odot(\odot)$

