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Basic concepts: SVM and kernels

Support Vector Classification

Training vectors : xi , i = 1, . . . , l

Feature vectors. For example,

A patient = [height, weight, . . .]T

Consider a simple case with two classes:

Define an indicator vector y

yi =

{
1 if xi in class 1
−1 if xi in class 2

A hyperplane which separates all data
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Basic concepts: SVM and kernels

wTx + b =
[
+1
0
−1

]
A separating hyperplane: wTx + b = 0

(wTxi) + b ≥ 1 if yi = 1
(wTxi) + b ≤ −1 if yi = −1

Decision function f (x) = sgn(wTx+ b), x: test data

Many possible choices of w and b

Chih-Jen Lin (National Taiwan Univ.) 5 / 84



Basic concepts: SVM and kernels

Maximal Margin

Distance between wTx + b = 1 and −1:

2/‖w‖ = 2/
√
wTw

A quadratic programming problem (Boser et al.,
1992)

min
w,b

1

2
wTw

subject to yi(w
Txi + b) ≥ 1,

i = 1, . . . , l .
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Basic concepts: SVM and kernels

Data May Not Be Linearly Separable

An example:

Allow training errors

Higher dimensional ( maybe infinite ) feature space

φ(x) = [φ1(x), φ2(x), . . .]T .
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Basic concepts: SVM and kernels

Standard SVM (Boser et al., 1992; Cortes and
Vapnik, 1995)

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , l .

Example: x ∈ R3, φ(x) ∈ R10

φ(x) = [1,
√

2x1,
√

2x2,
√

2x3, x
2
1 ,

x22 , x
2
3 ,
√

2x1x2,
√

2x1x3,
√

2x2x3]T
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Basic concepts: SVM and kernels

Finding the Decision Function

w: maybe infinite variables
The dual problem: finite number of variables

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
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Basic concepts: SVM and kernels

Kernel Tricks

Qij = yiyjφ(xi)Tφ(xj) needs a closed form

Example: xi ∈ R3, φ(xi) ∈ R10

φ(xi) = [1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3]T

Then φ(xi)Tφ(xj) = (1 + xTi xj)
2.

Kernel: K (x, y) = φ(x)Tφ(y); common kernels:

e−γ‖xi−xj‖
2

, (Radial Basis Function)

(xTi xj/a + b)d (Polynomial kernel)
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Basic concepts: SVM and kernels

Can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.

e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx
2
i +2γxixj−γx2

j

=e−γx
2
i −γx2

j
(
1 +

2γxixj
1!

+
(2γxixj)

2

2!
+

(2γxixj)
3

3!
+ · · ·

)
=e−γx

2
i −γx2

j
(
1 · 1+

√
2γ

1!
xi ·
√

2γ

1!
xj +

√
(2γ)2

2!
x2i ·

√
(2γ)2

2!
x2j

+

√
(2γ)3

3!
x3i ·

√
(2γ)3

3!
x3j + · · ·

)
= φ(xi)

Tφ(xj),

where

φ(x) = e−γx
2

[
1,

√
2γ

1!
x ,

√
(2γ)2

2!
x2,

√
(2γ)3

3!
x3, · · ·

]T
.
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Basic concepts: SVM and kernels

Issues

So what kind of kernel should I use?

What kind of functions are valid kernels?

How to decide kernel parameters?

Some of these issues will be discussed later
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Basic concepts: SVM and kernels

Decision function

At optimum

w =
∑l

i=1 αiyiφ(xi)

Decision function

wTφ(x) + b

=
l∑

i=1

αiyiφ(xi)
Tφ(x) + b

=
l∑

i=1

αiyiK (xi , x) + b

Only φ(xi) of αi > 0 used ⇒ support vectors
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Basic concepts: SVM and kernels

Support Vectors: More Important Data

Only φ(xi) of αi > 0 used ⇒ support vectors
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Dual problem and SVM variants

Deriving the Dual

For simplification, consider the problem without ξi

min
w,b

1

2
wTw

subject to yi(w
Tφ(xi) + b) ≥ 1, i = 1, . . . , l .

Its dual is

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi , i = 1, . . . , l ,

yTα = 0.
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Dual problem and SVM variants

Lagrangian Dual

max
α≥0

(
min
w,b

L(w, b,α)
)
,

where

L(w, b,α) =
1

2
‖w‖2 −

l∑
i=1

αi

(
yi(w

Tφ(xi) + b)− 1
)

Strong duality (be careful about this)

min Primal = max
α≥0

(
min
w,b

L(w, b,α)
)
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Dual problem and SVM variants

Simplify the dual. When α is fixed,

min
w,b

L(w, b,α) ={
−∞ if

∑l
i=1 αiyi 6= 0,

min
w

1
2w

Tw −
∑l

i=1 αi [yi(wTφ(xi)− 1] if
∑l

i=1 αiyi = 0.

If
∑l

i=1 αiyi 6= 0, we can decrease

−b
l∑

i=1

αiyi

in L(w, b,α) to −∞
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Dual problem and SVM variants

If
∑l

i=1 αiyi = 0, optimum of the strictly convex
function

1

2
wTw −

l∑
i=1

αi [yi(w
Tφ(xi)− 1]

happens when

∇wL(w, b,α) = 0.

Thus,

w =
l∑

i=1

αiyiφ(xi).
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Dual problem and SVM variants

Note that

wTw =

( l∑
i=1

αiyiφ(xi)

)T( l∑
j=1

αjyjφ(xj)

)
=
∑
i ,j

αiαjyiyjφ(xi)
Tφ(xj)

The dual is

max
α≥0


l∑

i=1

αi − 1
2

∑
i ,j

αiαjyiyjφ(xi)Tφ(xj) if
∑l

i=1 αiyi = 0,

−∞ if
∑l

i=1 αiyi 6= 0.
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Dual problem and SVM variants

Lagrangian dual: maxα≥0
(
minw,b L(w, b,α)

)
−∞ definitely not maximum of the dual
Dual optimal solution not happen when

l∑
i=1

αiyi 6= 0

.
Dual simplified to

max
α∈R l

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjφ(xi)
Tφ(xj)

subject to yTα = 0,

αi ≥ 0, i = 1, . . . , l .

Chih-Jen Lin (National Taiwan Univ.) 21 / 84



Dual problem and SVM variants

More about Dual Problems

After SVM is popular

Quite a few people think that for any optimization
problem

⇒ Lagrangian dual exists and strong duality holds

Wrong! We usually need

Convex programming; Constraint qualification

We have them

SVM primal is convex; Linear constraints
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Dual problem and SVM variants

Our problems may be infinite dimensional

Can still use Lagrangian duality

See a rigorous discussion in Lin (2001)
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Dual problem and SVM variants

Primal versus Dual

Recall the dual problem is

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

and at optimum

w =
l∑

i=1

αiyiφ(xi) (1)
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Dual problem and SVM variants

Primal versus Dual (Cont’d)

What if we put (1) into primal

min
α,ξ

1

2
αTQα + C

l∑
i=1

ξi

subject to (Qα + by)i ≥ 1− ξi (2)

ξi ≥ 0

If Q is positive definite, we can prove that the
optimal α of (2) is the same as that of the dual

So dual is not the only choice to solve when we use
kernels
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Dual problem and SVM variants

Other Variants

A general form for binary classification

min
w

r(w) + C
l∑

i=1

ξ(w; xi , yi)

r(w): regularization term

ξ(w; x, y): loss function: we hope ywTx > 0

C : regularization parameter
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Dual problem and SVM variants

Loss Functions

Some commonly used loss functions:

ξL1(w; x, y) ≡ max(0, 1− ywTx), (3)

ξL2(w; x, y) ≡ max(0, 1− ywTx)2, and (4)

ξLR(w; x, y) ≡ log(1 + e−yw
Tx). (5)

We omit the bias term b here

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(3)-(4)

Logistic regression (LR): (5)
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Dual problem and SVM variants

Loss Functions (Cont’d)

−ywTx

ξ(w; x, y)

ξL1

ξL2

ξLR

Indeed SVM and logistic regression are very similar
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Dual problem and SVM variants

Loss Functions (Cont’d)

If we use square loss function

ξ(w; x, y) ≡ (1− ywTx)2

it becomes least-square SVM (Suykens and
Vandewalle, 1999) or Gaussian process
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Dual problem and SVM variants

Regularization

L1 versus L2

‖w‖1 and wTw/2

wTw/2: smooth, easier to optimize

‖w‖1: non-differentiable

sparse solution; possibly many zero elements

Possible advantages of L1 regularization:

Feature selection

Less storage for w
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Dual problem and SVM variants

Training SVM

The main issue is to solve the dual problem

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

This will be discuss in Thursday’s lecture, which
talks about the connection between optimization
and machine learning
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Practical use of SVM

Let’s Try a Practical Example

A problem from astroparticle physics

1 2.61e+01 5.88e+01 -1.89e-01 1.25e+02

1 5.70e+01 2.21e+02 8.60e-02 1.22e+02

1 1.72e+01 1.73e+02 -1.29e-01 1.25e+02

0 2.39e+01 3.89e+01 4.70e-01 1.25e+02

0 2.23e+01 2.26e+01 2.11e-01 1.01e+02

0 1.64e+01 3.92e+01 -9.91e-02 3.24e+01

Training and testing sets available: 3,089 and 4,000
Data available at LIBSVM Data Sets
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Practical use of SVM

Training and Testing

Training the set svmguide1 to obtain svmguide1.model

$./svm-train svmguide1

Testing the set svmguide1.t

$./svm-predict svmguide1.t svmguide1.model out

Accuracy = 66.925% (2677/4000)

We see that training and testing accuracy are very
different. Training accuracy is almost 100%

$./svm-predict svmguide1 svmguide1.model out

Accuracy = 99.7734% (3082/3089)
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Practical use of SVM

Why this Fails

Gaussian kernel is used here

We see that most kernel elements have

Kij = e−‖xi−xj‖
2/4

{
= 1 if i = j ,

→ 0 if i 6= j .

because some features in large numeric ranges

For what kind of data,

K ≈ I?
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Practical use of SVM

Why this Fails (Cont’d)

If we have training data

φ(x1) = [1, 0, . . . , 0]T

...

φ(xl) = [0, . . . , 0, 1]T

then
K = I

Clearly such training data can be correctly
separated, but how about testing data?

So overfitting occurs
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Practical use of SVM

Overfitting

See the illustration in the next slide

In theory

You can easily achieve 100% training accuracy

This is useless

When training and predicting a data, we should

Avoid underfitting: small training error

Avoid overfitting: small testing error
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Practical use of SVM

l and s: training; © and 4: testing
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Practical use of SVM

Data Scaling

Without scaling, the above overfitting situation may
occur

Also, features in greater numeric ranges may
dominate

A simple solution is to linearly scale each feature to
[0, 1] by:

feature value−min

max−min
,

There are many other scaling methods

Scaling generally helps, but not always
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Practical use of SVM

Data Scaling: Same Factors

A common mistake

$./svm-scale -l -1 -u 1 svmguide1 > svmguide1.scale

$./svm-scale -l -1 -u 1 svmguide1.t > svmguide1.t.scale

-l -1 -u 1: scaling to [−1, 1]

We need to use same factors on training and testing

$./svm-scale -s range1 svmguide1 > svmguide1.scale

$./svm-scale -r range1 svmguide1.t > svmguide1.t.scale

Later we will give a real example
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Practical use of SVM

After Data Scaling

Train scaled data and then predict

$./svm-train svmguide1.scale

$./svm-predict svmguide1.t.scale svmguide1.scale.model

svmguide1.t.predict

Accuracy = 96.15%

Training accuracy is now similar

$./svm-predict svmguide1.scale svmguide1.scale.model o

Accuracy = 96.439%

For this experiment, we use parameters C = 1, γ = 0.25,
but sometimes performances are sensitive to parameters
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Practical use of SVM

Parameters versus Performances

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 svmguide1.scale

$./svm-predict svmguide1.scale svmguide1.scale.model o

Accuracy = 100% (3089/3089)

100% training accuracy but

$./svm-predict svmguide1.t.scale svmguide1.scale.model o

Accuracy = 82.7% (3308/4000)

Very bad test accuracy

Overfitting happens
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Practical use of SVM

Parameter Selection

For SVM, we may need to select suitable parameters

They are C and kernel parameters

Example:

γ of e−γ‖xi−xj‖
2

a, b, d of (xTi xj/a + b)d

How to select them so performance is better?

Chih-Jen Lin (National Taiwan Univ.) 43 / 84



Practical use of SVM

Performance Evaluation

Available data ⇒ training and validation

Train the training; test the validation to estimate
the performance

A common way is k-fold cross validation (CV):

Data randomly separated to k groups

Each time k − 1 as training and one as testing

Select parameters/kernels with best CV result

There are many other methods to evaluate the
performance
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Practical use of SVM

Contour of CV Accuracy
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Practical use of SVM

The good region of parameters is quite large

SVM is sensitive to parameters, but not that
sensitive

Sometimes default parameters work

but it’s good to select them if time is allowed
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Practical use of SVM

Example of Parameter Selection

Direct training and test

$./svm-train svmguide3

$./svm-predict svmguide3.t svmguide3.model o

→ Accuracy = 2.43902%

After data scaling, accuracy is still low

$./svm-scale -s range3 svmguide3 > svmguide3.scale

$./svm-scale -r range3 svmguide3.t > svmguide3.t.scale

$./svm-train svmguide3.scale

$./svm-predict svmguide3.t.scale svmguide3.scale.model o

→ Accuracy = 12.1951%
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Practical use of SVM

Example of Parameter Selection (Cont’d)

Select parameters by trying a grid of (C , γ) values

$ python grid.py svmguide3.scale

· · ·
128.0 0.125 84.8753

(Best C=128.0, γ=0.125 with five-fold cross-validation
rate=84.8753%)

Train and predict using the obtained parameters

$ ./svm-train -c 128 -g 0.125 svmguide3.scale

$ ./svm-predict svmguide3.t.scale svmguide3.scale.model svmguide3.t.predict

→ Accuracy = 87.8049%
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Practical use of SVM

Selecting Kernels

RBF, polynomial, or others?

For beginners, use RBF first

Linear kernel: special case of RBF

Accuracy of linear the same as RBF under certain
parameters (Keerthi and Lin, 2003)

Polynomial kernel:

(xTi xj/a + b)d

Numerical difficulties: (< 1)d → 0, (> 1)d →∞
More parameters than RBF
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Practical use of SVM

Selecting Kernels (Cont’d)

Commonly used kernels are Gaussian (RBF),
polynomial, and linear

But in different areas, special kernels have been
developed. Examples

1. χ2 kernel is popular in computer vision

2. String kernel is useful in some domains
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Practical use of SVM

A Simple Procedure for Beginners

After helping many users, we came up with the following
procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K (x, y) = e−γ‖x−y‖
2

3. Use cross-validation to find the best parameter C and
γ

4. Use the best C and γ to train the whole training set

5. Test

In LIBSVM, we have a python script easy.py
implementing this procedure.
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Practical use of SVM

A Simple Procedure for Beginners
(Cont’d)

We proposed this procedure in an “SVM guide”
(Hsu et al., 2003) and implemented it in LIBSVM

From research viewpoints, this procedure is not
novel. We never thought about submiting our guide
somewhere

But this procedure has been tremendously useful.

Now almost the standard thing to do for SVM
beginners
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Practical use of SVM

A Real Example of Wrong Scaling

Separately scale each feature of training and testing data
to [0, 1]

$ ../svm-scale -l 0 svmguide4 > svmguide4.scale

$ ../svm-scale -l 0 svmguide4.t > svmguide4.t.scale

$ python easy.py svmguide4.scale svmguide4.t.scale

Accuracy = 69.2308% (216/312) (classification)

The accuracy is low even after parameter selection

$ ../svm-scale -l 0 -s range4 svmguide4 > svmguide4.scale

$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale

$ python easy.py svmguide4.scale svmguide4.t.scale

Accuracy = 89.4231% (279/312) (classification)
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Practical use of SVM

A Real Example of Wrong Scaling
(Cont’d)

With the correct setting, the 10 features in the test data
svmguide4.t.scale have the following maximal values:

0.7402, 0.4421, 0.6291, 0.8583, 0.5385, 0.7407, 0.3982,
1.0000, 0.8218, 0.9874

Scaling the test set to [0, 1] generated an erroneous set.
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Multi-class classification

Multi-class Classification

k classes

One-against-the rest: Train k binary SVMs:

1st class vs. (2, · · · , k)th class
2nd class vs. (1, 3, . . . , k)th class

...

k decision functions

(w1)Tφ(x) + b1
...

(wk)Tφ(x) + bk
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Multi-class classification

Prediction:

arg max
j

(wj)Tφ(x) + bj

Reason: If x ∈ 1st class, then we should have

(w1)Tφ(x) + b1 ≥ +1

(w2)Tφ(x) + b2 ≤ −1
...

(wk)Tφ(x) + bk ≤ −1
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Multi-class classification

Multi-class Classification (Cont’d)

One-against-one: train k(k − 1)/2 binary SVMs

(1, 2), (1, 3), . . . , (1, k), (2, 3), (2, 4), . . . , (k − 1, k)

If 4 classes ⇒ 6 binary SVMs

yi = 1 yi = −1 Decision functions
class 1 class 2 f 12(x) = (w12)Tx + b12

class 1 class 3 f 13(x) = (w13)Tx + b13

class 1 class 4 f 14(x) = (w14)Tx + b14

class 2 class 3 f 23(x) = (w23)Tx + b23

class 2 class 4 f 24(x) = (w24)Tx + b24

class 3 class 4 f 34(x) = (w34)Tx + b34
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Multi-class classification

For a testing data, predicting all binary SVMs

Classes winner
1 2 1
1 3 1
1 4 1
2 3 2
2 4 4
3 4 3

Select the one with the largest vote

class 1 2 3 4
# votes 3 1 1 1

May use decision values as well
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Multi-class classification

More Complicated Forms

Solving a single optimization problem (Weston and
Watkins, 1999; Crammer and Singer, 2002; Lee
et al., 2004)

There are many other methods

A comparison in Hsu and Lin (2002)

RBF kernel: accuracy similar for different methods

But 1-against-1 is the fastest for training
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Large-scale training

SVM doesn’t Scale Up

Yes, if using kernels

Training millions of data is time consuming

Cases with many support vectors: quadratic time
bottleneck on

QSV, SV

For noisy data: # SVs increases linearly in data size
(Steinwart, 2003)

Some solutions

Parallelization

Approximation
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Large-scale training

Parallelization

Multi-core/Shared Memory/GPU

• One line change of LIBSVM
Multicore Shared-memory
1 80 1 100
2 48 2 57
4 32 4 36
8 27 8 28

50,000 data (kernel evaluations: 80% time)
• GPU (Catanzaro et al., 2008); Cell (Marzolla, 2010)

Distributed Environments

• Chang et al. (2007); Zanni et al. (2006); Zhu et al.
(2009).
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Large-scale training

Approximately Training SVM

Can be done in many aspects

Data level: sub-sampling

Optimization level:

Approximately solve the quadratic program

Other non-intuitive but effective ways

I will show one today

Many papers have addressed this issue
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Large-scale training

Approximately Training SVM (Cont’d)

Subsampling

Simple and often effective

More advanced techniques

Incremental training: (e.g., Syed et al., 1999)

Data ⇒ 10 parts

train 1st part ⇒ SVs, train SVs + 2nd part, . . .

Select and train good points: KNN or heuristics

For example, Bakır et al. (2005)
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Large-scale training

Approximately Training SVM (Cont’d)

Approximate the kernel; e.g., Fine and Scheinberg
(2001); Williams and Seeger (2001)

Use part of the kernel; e.g., Lee and Mangasarian
(2001); Keerthi et al. (2006)

Early stopping of optimization algorithms

Tsang et al. (2005) and others

And many more

Some simple but some sophisticated
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Large-scale training

Approximately Training SVM (Cont’d)

Sophisticated techniques may not be always useful

Sometimes slower than sub-sampling

covtype: 500k training and 80k testing

rcv1: 550k training and 14k testing

covtype rcv1
Training size Accuracy Training size Accuracy

50k 92.5% 50k 97.2%
100k 95.3% 100k 97.4%
500k 98.2% 550k 97.8%
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Large-scale training

Discussion: Large-scale Training

We don’t have many large and well labeled sets

Expensive to obtain true labels

Specific properties of data should be considered

We will illustrate this point using linear SVM

The design of software for very large data sets
should be application different
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Linear SVM

Outline

Basic concepts: SVM and kernels
Dual problem and SVM variants
Practical use of SVM
Multi-class classification
Large-scale training
Linear SVM
Discussion and conclusions
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Linear SVM

Linear and Kernel Classification

Methods such as SVM and logistic regression can used in
two ways

Kernel methods: data mapped to a higher
dimensional space

x⇒ φ(x)

φ(xi)Tφ(xj) easily calculated; little control on φ(·)
Linear classification + feature engineering:

We have x without mapping. Alternatively, we can
say that φ(x) is our x; full control on x or φ(x)

We refer to them as kernel and linear classifiers
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Linear SVM

Linear and Kernel Classification

Let’s check the prediction cost

wTx + b versus
∑l

i=1
αiK (xi , x) + b

If K (xi , xj) takes O(n), then

O(n) versus O(nl)

Linear is much cheaper
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Linear SVM

Linear and Kernel Classification (Cont’d)

Also, linear is a special case of kernel

Indeed, we can prove that accuracy of linear is the
same as Gaussian (RBF) kernel under certain
parameters (Keerthi and Lin, 2003)

Therefore, roughly we have

accuracy: kernel ≥ linear
cost: kernel � linear

Speed is the reason to use linear
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Linear SVM

Linear and Kernel Classification (Cont’d)

For some problems, accuracy by linear is as good as
nonlinear

But training and testing are much faster

This particularly happens for document classification

Number of features (bag-of-words model) very large

Data very sparse (i.e., few non-zeros)

Recently linear classification is a popular research
topic. Sample works in 2005-2008: Joachims
(2006); Shalev-Shwartz et al. (2007); Hsieh et al.
(2008)
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Linear SVM

Comparison Between Linear and Kernel
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Linear SVM

Extension: Training Explicit Form of
Nonlinear Mappings

Linear-SVM method to train φ(x1), . . . , φ(xl)

Kernel not used

Applicable only if dimension of φ(x) not too large

Low-degree Polynomial Mappings

K (xi , xj) = (xTi xj + 1)2 = φ(xi)
Tφ(xj)

φ(x) = [1,
√

2x1, . . . ,
√

2xn, x
2
1 , . . . , x

2
n ,√

2x1x2, . . . ,
√

2xn−1xn]T

When degree is small, train the explicit form of φ(x)
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Linear SVM

Testing Accuracy and Training Time

Data set
Degree-2 Polynomial Accuracy diff.

Training time (s)
Accuracy Linear RBF

LIBLINEAR LIBSVM
a9a 1.6 89.8 85.06 0.07 0.02
real-sim 59.8 1,220.5 98.00 0.49 0.10
ijcnn1 10.7 64.2 97.84 5.63 −0.85
MNIST38 8.6 18.4 99.29 2.47 −0.40
covtype 5,211.9 NA 80.09 3.74 −15.98
webspam 3,228.1 NA 98.44 5.29 −0.76

Training φ(xi) by linear: faster than kernel, but
sometimes competitive accuracy
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Linear SVM

Discussion: Directly Train φ(xi),∀i

See details in our work (Chang et al., 2010)

A related development: Sonnenburg and Franc
(2010)

Useful for certain applications
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Discussion and conclusions

Extensions of SVM

Multiple Kernel Learning (MKL)

Learning to rank

Semi-supervised learning

Active learning

Cost sensitive learning

Structured Learning
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Discussion and conclusions

Conclusions

SVM and kernel methods are rather mature areas

But still quite a few interesting research issues

Many are extensions of standard classification

It is possible to identify more extensions through
real applications
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