
1

Parallel Spectral Clustering in Distributed

Systems
Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, Edward Y. Chang

Abstract

Spectral clustering algorithms have been shown to be more effective in finding clusters than some traditional

algorithms such as k-means. However, spectral clustering suffers from a scalability problem in both memory use and

computational time when the size of a data set is large. To perform clustering on large data sets, we investigate two

representative ways of approximating the dense similarity matrix. We compare one approach by sparsifying the matrix

with another by the Nyström method. We then pick the strategy of sparsifying the matrix via retaining nearest neighbors

and investigate its parallelization. We parallelize both memory use and computation on distributed computers. Through

an empirical study on a document data set of 193, 844 instances and a photo data set of 2, 121, 863, we show that

our parallel algorithm can effectively handle large problems.

Index Terms

Parallel spectral clustering, distributed computing, normalized cuts, nearest neighbors, Nyström approximation.

I. INTRODUCTION

Clustering is one of the most important subroutines in machine learning and data mining tasks. Recently, spectral

clustering methods (e.g., [35] [31] [13]), which exploit pairwise similarities of data instances, have been shown

to be more effective than traditional methods such as k-means, which only considers the similarity values from

instances to k centers. (We denote k as the number of desired clusters.) Because of its effectiveness in finding

clusters, spectral clustering has been widely used in several areas such as information retrieval and computer vision

(e.g., [9] [49] [35] [50]). Unfortunately, when the number of data instances (denoted as n) is large, spectral clustering

can encounter a quadratic resource bottleneck [13] [25] in computing pairwise similarity among n data instances,

and in storing the large similarity matrix. Moreover, the algorithm requires considerable time and memory to find

and store the first k eigenvectors of a Laplacian matrix.

The most commonly used approach to address the computational and memory difficulties is to zero out some

elements in the similarity matrix, or to sparsify the matrix. From the obtained sparse similarity matrix, one then finds

W.-Y. Chen is with the Department of Computer Science, University of California, Santa Barbara, CA 93106, USA.

Y. Song is with the Department of Automation, Tsinghua University, Beijing, 100084, China.

C.-J. Lin is with the Department of Computer Science, National Taiwan University, Taipei, 106, Taiwan.

H. Bai and E. Y. Chang are with Google Research, USA/China.

2

the corresponding Laplacian matrix and calls a sparse eigensolver. Several methods are available for sparsifying the

similarity matrix [28]. A sparse representation effectively handles the memory bottleneck, but some sparsification

schemes still require calculating all elements of the similarity matrix. Another popular approach to speed up spectral

clustering is by using a dense sub-matrix of the similarity matrix. In particular, Fowlkes et al. [13] propose using the

Nyström approximation to avoid calculating the whole similarity matrix; this approach trades accurate similarity

values for shortened computational time. In another work, Dhillon et al. [10] propose a method that does not

use eigenvectors, but they assume the availability of the similarity matrix. In this work, we aim at developing a

parallel spectral clustering package on distributed environments. We begin by analyzing 1) the traditional method

of sparsifying the similarity matrix and 2) the Nyström approximation. While the sparsification approach may be

more computationally expensive, our experimental results indicate that it may yield a slightly better solution. This

paper presents one of the first detailed comparisons between the effectiveness of these two approaches.

We consider the sparsification strategy of retaining nearest neighbors, and then investigate its parallel imple-

mentation. Our parallel implementation, which we call parallel spectral clustering (PSC), provides a systematic

solution for handling challenges from calculating the similarity matrix to efficiently finding eigenvectors. Note that

parallelizing spectral clustering is much more challenging than parallelizing k-means, which was performed by

e.g., [6] [11] [18] [48]. PSC first distributes n data instances onto p distributed machine nodes. On each node, PSC

computes the similarities between local data and the whole set in a way that uses minimal disk I/O. Then PSC stores

the eigenvector matrix on distributed nodes to reduce per-node memory use. Together with parallel eigensolver and

k-means, PSC achieves good speedup with large data sets.

The remainder of this paper is organized as follows: In Section II, we present spectral clustering and analyze

its memory bottlenecks when storing a dense similarity matrix. After discussing various approaches to handle

this memory challenge, we present sparsification and Nyström approaches in Sections III and IV, respectively. In

Section V, we present PSC, which considers sparsifying the matrix via retaining nearest neighbors. We conduct two

experiments in Section VI. The first one compares the clustering quality between sparsification and the Nyström

approximation. Results show that the former may yield slightly better clustering results. The second experiment

investigates the speedup of our parallel implementation. PSC achieves good speedup on up to 256 machines.

Section VII offers our concluding remarks.

II. SPECTRAL CLUSTERING

This section presents the spectral clustering algorithm, and describes the resource bottlenecks inherent in this

approach. To assist readers, Table I defines terms and notation used throughout this paper.

A. Basic Concepts

Given n data points x1, . . . ,xn, the spectral clustering algorithm constructs a similarity matrix S ∈ Rn×n, where

Sij ≥ 0 reflects the relationship between xi and xj . It then uses similarity information to group x1, . . . ,xn into k

3

TABLE I

NOTATION. THE FOLLOWING NOTATION IS USED IN THE PAPER.

n number of data

d dimensionality of data

k number of desired clusters

p number of nodes (distributed computers)

t number of nearest neighbors

m Arnoldi length in using an eigensolver

l number of sample points in Nyström method

x1, . . . ,xn ∈ Rd data points

S ∈ Rn×n similarity matrix

L ∈ Rn×n Laplacian matrix

v1, . . . ,vk ∈ Rn first k eigenvectors of L

V ∈ Rn×k eigenvector matrix

e1, . . . , ek (in different length) cluster indicator vectors

E ∈ Rn×k cluster indicator matrix

c1, . . . , ck ∈ Rd cluster centers of k-means

clusters. There are several variants of spectral clustering. Here we consider the commonly used normalized spectral

clustering [32]. (For a survey of all variants, please refer to [28].) An example similarity function is the Gaussian:

Sij = exp

(
−‖xi − xj‖2

2σ2

)
, (1)

where σ is a scaling parameter to control how rapidly the similarity Sij reduces with the distance between xi and

xj . Consider the normalized Laplacian matrix [7]:

L = I −D−1/2SD−1/2, (2)

where D is a diagonal matrix with

Dii =

n∑
j=1

Sij .

Note that D−1/2 indicates the inverse square root of D. It can be easily shown that for any S with Sij ≥ 0, the

Laplacian matrix is symmetric positive semi-definite. In the ideal case, where data in one cluster are not related to

those in others, nonzero elements of S (and hence L) only occur in a block diagonal form:

L =

L1

. . .

Lk

 .
It is known that L has k zero-eigenvalues, which are also the k smallest ones [28, Proposition 4]. Their corresponding

eigenvectors, written as an Rn×k matrix, are

V = [v1,v2, . . . ,vk] = D1/2E, (3)

4

where vi ∈ Rn, i = 1, . . . , k, and

E =

e1

. . .

ek

 ,
where ei, i = 1, . . . , k (in different length) are vectors of all ones. As D1/2E has the same structure as E, simple

clustering algorithms such as k-means can easily cluster the n rows of V into k groups. Thus, what one needs to

do is to find the first k eigenvectors of L (i.e., eigenvectors corresponding to the k smallest eigenvalues). However,

practically the eigenvectors we obtained are in the form of

V = D1/2EQ,

where Q is an orthogonal matrix. Ng et al. [32] propose normalizing V so that

Uij =
Vij√∑k
r=1 V

2
ir

, i = 1, . . . , n, j = 1, . . . , k. (4)

Each row of U has a unit length. Due to the orthogonality of Q, (4) is equivalent to

U = EQ =

Q1,1:k

...

Q1,1:k

Q2,1:k

...

, (5)

where Qi,1:k indicates the ith row of Q. Then U ’s n rows correspond to k orthogonal points on the unit sphere.

The n rows of U can thus be easily clustered by k-means [32] or other simple techniques [50] [52].

Instead of analyzing properties of the Laplacian matrix, spectral clustering algorithms can also be derived from

the graph cut point of view. That is, we partition the matrix according to the relationship between points. Some

representative graph-cut methods are Normalized Cut [35], Min-Max Cut [12], and Ratio Cut [19].

B. Approximation of the Dense Similarity Matrix

A serious bottleneck for spectral clustering is the memory use for storing S, whose number of elements is the

square of the number of data points. For instance, storing n = 106 data instances (assuming double precision storage)

requires 8 TBytes of memory, which is not available on a general-purpose machine. Approximation techniques have

been proposed to avoid storing the dense matrix. Figure 1 depicts several existing approximation techniques.

In this paper, we study two representative methods. First, the sparsification method retains the “most useful” Sij to

form a sparse matrix to reduce memory use. We discuss details in Section III. Second, the Nyström approximation

stores only several columns (or rows) of the similarity matrix S. We present the details in Section IV. These

two methods represent the two extremes of the choice spectrum depicted in Figure 1. On the one extreme, the

sparsification method considers information in the data and hence requires expensive computation for gaining such

5

Dense similarity matrix

OthersSparse matrix
(same size as the dense matrix)

Sub-matrix
(several columns or rows of the dense matrix)

t-nearest-neighborǫ-neighborhoodrandom greedy Nyström

Fig. 1. This figure presents approximation techniques for spectral clustering to avoid storing the dense similarity matrix. In this paper, we

mainly investigate two types of techniques: “Sparse matrix” is a technique to retain only certain nonzero Sij ’s. The resulting matrix is still a

square one, but is sparse. “Sub-matrix" is a technique to use several columns (or rows) of S. That is, a rectangular portion of the original dense

matrix is retained. Each type of techniques has several variants. We use thick lines to indicate approaches studied in this paper.

information; on the other extreme, the Nyström approximation considers no information in sampling columns/rows

(random samples).

III. SPECTRAL CLUSTERING USING A SPARSE SIMILARITY MATRIX

To avoid storing the dense similarity matrix, one could reduce the matrix S to a sparse one by considering only

significant relationships between data instances. For example, we may retain only Sij where j (or i) is among the

t nearest neighbors of i (or j) [2] [28]. Typically t is a small number (e.g., a small fraction of n). We refer to this

way as the t-nearest-neighbor approach. Another simple strategy to make S a sparse matrix is to zero out those

Sij smaller than a pre-specified threshold ε. It is often called the ε-neighborhood approach. While these techniques

effectively conquer the memory difficulty, they still have to calculate all possible Sij , and hence the computational

time is high. Some approaches (e.g., [1]) thus consider zeroing out random entries in the similarity matrix. Though

this simplification effectively saves time, experiments in Fowlkes et al. [13] reveal inferior performance. Such a

result is predictable as it does not use significant relationships between data points. In this section, we focus on

studying the method of using t nearest neighbors.

Algorithm 1 presents the spectral clustering using t-nearest-neighbor method for sparsification. In the rest of this

section we examine its computational cost and the memory use. We omit discussing some inexpensive steps.

Construct the similarity matrix. To generate a sparse similarity matrix, we employ the t-nearest-neighbor approach

and retain only Sij where i (or j) is among the t nearest neighbors of j (or i). A typical implementation is as follows.

By keeping a max heap with size t, we sequentially insert the distance that is smaller than the maximal value of

the heap and then restructure the heap. Since restructuring a max heap is on the order of log t, the complexity of

generating a sparse matrix S is

O(n2d) +O(n2 log t) time and O(nt) memory. (6)

The O(n2d) cost can be reduced to a smaller value using techniques such as KD-trees [4] and Metric trees [42].

However, these techniques are less suitable if d, the dimensionality, is large. To further reduce the cost, one can

6

Algorithm 1 Spectral clustering using a sparse similarity matrix
Input: Data points x1, . . . ,xn; k: number of desired clusters.

1) Construct similarity matrix S ∈ Rn×n.

2) Modify S to be a sparse matrix.

3) Compute the Laplacian matrix L by Eq. (2).

4) Compute the first k eigenvectors of L; and construct V ∈ Rn×k, whose columns are the k eigenvectors.

5) Compute the normalized matrix U of V by Eq. (4).

6) Use k-means algorithm to cluster n rows of U into k groups.

only find neighbors which are close but not the closest (approximate nearest neighbors). For example, it is possible

that one only approximately finds the t nearest neighbors using techniques such as spill-tree [26]. The complexity,

less than n2, depends on the level of the approximation; see the discussion in Section VII. Nevertheless, studying

approximate nearest-neighbor methods is beyond the scope of this study. We thus focus only on a precise method

to find t nearest neighbors.

The above construction may lead to a non-symmetric matrix. We can easily make it symmetric. If either (i, j)

or (j, i) element is nonzero, we set both positions to have the same value Sij . Making the matrix symmetric leads

to at most 2t nonzero elements per row. As 2t� n, the symmetric matrix is still sparse.

Compute the first k eigenvectors by Lanczos/Arnoldi factorization. Once we have obtained a sparse similarity

matrix S and its Laplacian matrix L by Eq. (2), we can use sparse eigensolvers. In particular, we desire a solver

that can quickly obtain the first k eigenvectors of L. Some example solvers are SLEPc [21] and ARPACK [22]

(see [20] for a comprehensive survey). Most existing approaches are variants of the Lanczos/Arnoldi factorization.

These variants have similar time complexity. We employ a popular one called ARPACK and briefly describe its basic

concepts hereafter; more details can be found in the user’s guide of ARPACK. The m-step Arnoldi factorization

gives that

LV̄ = V̄ H + (a matrix of small values), (7)

where V̄ ∈ Rn×m and H ∈ Rm×m satisfy certain properties. If the “matrix of small values” in (7) is indeed zero,

then V̄ ’s m columns are L’s first m eigenvectors (details not derived here). Therefore, (7) provides a way to check

how well we approximate eigenvectors of L. To know how good the approximation is, one needs all eigenvalues

of the dense matrix H , a procedure taking O(m3) operations. ARPACK employs an iterative procedure called

“implicitly restarted” Arnoldi. Users specify an Arnoldi length m > k. Then at each iteration (restarted Arnoldi)

one uses V̄ and H from the previous iteration to conduct the eigendecomposition of H , and find a new Arnoldi

factorization. An Arnoldi factorization at each iteration involves at most (m − k) steps, where each step’s main

computational complexity is O(nm) for a few dense matrix-vector products and O(nt) for a sparse matrix-vector

product. In particular, O(nt) is for

Lv, (8)

7

where v is an n × 1 vector. As each row of L has no more than 2t nonzero elements, the cost of this sparse

matrix-vector product is O(nt).

After finishing the implicitly restarted Arnoldi procedure, from the final V̄ , we can obtain the required matrix

V . Based on the above analysis, the overall cost of ARPACK is(
O(m3) + (O(nm) +O(nt))×O(m− k)

)
× (# restarted Arnoldi), (9)

where O(m− k) is a value no more than m− k. Obviously, the selected value m affects the computational time.

One often sets m to be several times larger than k. In a typical run, ARPACK may take a few dozens of restarted

Arnoldi iterations. The memory requirement of ARPACK is O(nt) +O(nm).

Use k-means to cluster the normalized matrix U . Let uj , j = 1, . . . , n, be vectors corresponding to U ’s n rows.

Algorithm k-means aims at minimizing the total intra-cluster variance, which is the squared error function in the

spectral space:
k∑

i=1

∑
uj∈Ci

||uj − ci||2. (10)

We assume that data are in k clusters Ci, i = 1, 2, . . . , k, and ci ∈ Rk is the centroid of all the points uj ∈ Ci.

The k-means algorithm employs an iterative procedure. At each iteration, one finds each data point’s nearest

center and assigns it to the corresponding cluster. Cluster centers are then recalculated. The procedure stops after

reaching a stable error function value. Since the algorithm evaluates the distances between any point and the current

k cluster centers, the time complexity of k-means is

O(nk2)× (# of k-means). (11)

Note that each point or center here is a vector of length k. In this work, we terminate k-means iterations if the

relative difference between the two error function values in consecutive iterations is less than 0.001.

Overall analysis. If one uses a direct method of finding the t nearest neighbors, from (6), (9), and (11), the

O(n2d) + O(n2 log t) computational time is the main bottleneck for spectral clustering. This bottleneck has been

discussed in earlier work. For example, Liu et al. [25] state that “The majority of the time is actually spent on

constructing the pairwise distance and affinity matrices. Comparatively, the actually clustering is almost negligible.”

A summary of the computational complexity of t-nearest-neighbor is listed on the last column of Table II.

IV. SPECTRAL CLUSTERING USING NYSTRÖM APPROXIMATION

In Section III we introduced approximate spectral clustering based on sparse similarity values (t-nearest-neighbor).

In this section, we describe another approximation technique, the Nyström method, which uses a sub-matrix of the

dense similarity matrix.

8

TABLE II

ANALYSIS OF THE TIME COMPLEXITY FOR THE METHODS DESCRIBED IN SECTIONS III AND IV.

Algorithms Nyström using (16) Nyström using (19) t-nearest-neighbor sparse matrix

Obtaining
O(nld) O(nld) O(n2d+ n2 log t)

the similarity matrix

Finding first
O(l3) +O(nlk)

O((n− l)l2) +O(l3) (O(m3) + (O(nm) +O(nt))×O(m− k))

k eigenvectors + O(nlk) ×(# restarted Arnoldi)

A. Nyström Method

The Nyström method is a technique for finding an approximate eigendecomposition. Williams [44] applied it to

speed up the kernel machines, and this method has been widely applied to areas involving large dense matrices.

Some existing work includes Fowlkes et al. [13] for image segmentation and Talwalkar et al. [39] for manifold

learning. In this section, we discuss how to apply the Nyström method to general spectral clustering.

Here we denote by Sd a dense n × n similarity matrix. Assume that we randomly sample l � n points from

the data∗. Let A represent the l × l matrix of similarities between the sample points, B be the l × (n− l) matrix

of affinities between the l sample points and the (n − l) remaining points, and W be the n × l matrix consisting

of A and BT . We can rearrange the columns and rows of Sd based on this sampling such that:

Sd =

 A B

BT C

 , and W =

 A
BT

 (12)

with A ∈ Rl×l, B ∈ Rl×(n−l), and C ∈ R(n−l)×(n−l). Here C contains the similarities between all (n − l)

remaining points.

The Nyström method uses A and B to approximate Sd. Using W of (12), the approximation (denoted by S̃)

takes the form:

Sd ≈ S̃ = WA−1WT =

 A B

BT BTA−1B

 . (13)

That is, the matrix C in Sd is now replaced by BTA−1B. Assume the eigendecomposition of A takes the form A =

VAΣAV
T
A , where ΣA contains the eigenvalues of A and VA are the corresponding eigenvectors. The approximate

eigenvalues (Σ̃) and eigenvectors (Ṽ) of Sd generated from the Nyström method are:

Σ̃ =
(n
l

)
ΣA, Ṽ =

√
l

n
WVAΣ−1A . (14)

Moreover, (14) implies that S̃ has the eigendecomposition:

S̃ = Ṽ Σ̃Ṽ T .

∗One may use other ways to select samples. See, for example, Figure 1 references a “greedy” method discussed in [33].

9

B. Application to Spectral Clustering

To apply the Nyström method to spectral clustering, we select l > k. The normalized Laplacian matrix for the

Nyström method takes the form:

L̃ = I −D−1/2S̃D−1/2,

where D is a diagonal matrix with

Dii =

n∑
j=1

S̃ij .

Following the procedure in Section II-A, we then find the first k eigenvectors of L̃ and conduct k-means to cluster

data. To obtain the matrix D, we compute the row sums of S̃. A direct calculation of S̃ involves the matrix-matrix

product BTA−1B, which is an expensive O(l(n − l)2) operation. Fowlkes et al. [13] thus propose the following

procedure:

S̃1 =

 A1l +B1n−l

BT1l +BTA−1B1n−l

 =

 a + b1

b2 +BT
(
A−1b1

)
 , (15)

where a, b1, b2 represent the row sums of A, B and BT , respectively, and 1 is a column vector of ones. Using

(15), the cost of obtaining D is just O(l(n− l)). Then D−1/2S̃D−1/2 can be represented in a different form:

D−1/2S̃D−1/2 =

 Ā B̄

B̄T B̄T Ā−1B̄

 ,
where

Ā = D
−1/2
1:l,1:lAD

−1/2
1:l,1:l, B̄ = D

−1/2
1:l,1:lBD

−1/2
l+1:n,l+1:n.

As D−1/2S̃D−1/2 and L̃ share the same eigenspace, following (14) we approximately obtain L̃’s first k eigenvectors

via the eigendecomposition Ā = V̄AΣ̄AV̄
T
A and then

Σ̃ =
(n
l

) (
Σ̄A

)
:,1:k

, Ṽ =

√
l

n

 Ā
B̄T

(V̄A):,1:k (Σ̄−1A

)
1:k,1:k

, (16)

where we assume that eigenvalues in Σ̄A are arranged in descending order.

However, we explain below a concern that columns of Ṽ are not orthogonal. For kernel methods and some other

applications of the Nyström method, this concern may not be a problem. For spectral clustering, in (3) of Section II-

A, V ’s columns are orthogonal and then in the ideal situation, the normalized matrix U has rows corresponding to

k orthogonal points on the unit sphere. Fowlkes et al. [13] proposed an approach to obtain orthogonal columns of

Ṽ †. Let

R = Ā+ Ā−1/2B̄B̄T Ā−1/2 (17)

†Instead one may use a method called “column sampling.” See the discussion in [39].

10

Algorithm 2 Spectral clustering using the Nyström method
Input: Data points x1, . . . ,xn; l: number of samples; k: number of desired clusters; l > k.

1) Construct A ∈ Rl×l and B ∈ Rl×(n−l) so that
[
A B

]
contains the similarity between x1, . . . ,xl and

x1, . . . ,xn.

2) Calculate a = A1l, b1 = B1n−l, b2 = BT1l and D = diag

 a + b1

b2 +BTA−1b1

. Here 1 represents a

column vector of ones.

3) Calculate Ā = D
−1/2
1:l,1:lAD

−1/2
1:l,1:l, B̄ = D

−1/2
1:l,1:lBD

−1/2
l+1:n,l+1:n.

4) Construct R = Ā+ Ā−1/2B̄B̄T Ā−1/2.

5) Calculate eigendecomposition of R, R = URΛRU
T
R . Ensure that the eigenvalues in ΛR are in decreasing

order.

6) Calculate Ṽ =

 Ā
B̄T

 Ā−1/2(UR):,1:k(Λ
−1/2
R)1:k,1:k as the first k eigenvector of L̃.

7) Compute the normalized matrix Ũ of Ṽ by Eq. (4).

8) Use k-means algorithm to cluster n rows of Ũ into k groups.

and its eigendecomposition R = URΛRU
T
R . It is proved in [13] that if Ā is positive definite‡, then

Ṽ =

 Ā
B̄T

 Ā−1/2URΛ
−1/2
R (18)

has orthogonal columns (i.e. Ṽ T Ṽ = I) and D−1/2S̃D−1/2 = Ṽ ΛRṼ
T . Since we require only the first k

eigenvectors of L̃, similar to (16), we calculate the first k columns of Ṽ via

Ṽ =

 Ā
B̄T

 Ā−1/2(UR):,1:k(Λ
−1/2
R)1:k,1:k. (19)

We then normalize Ṽ along its rows to get Ũ , and use k-means to cluster Ũ ’s n rows into k groups. A summary

of the Nyström method using (19) is presented in Algorithm 2.

C. Computational Complexity and Memory Use

Under the same assumption that calculating each Sij costs O(d), where d is the dimension of data, obtaining

matrices A and B costs O(nld). If using (16), the main cost includes O(l3) operations for the eigendecomposition

of Ā and O(nlk) operations for the matrix-matrix product. The first two columns of Table II list the computational

complexity of the Nyström method. Regarding the memory use, as l columns of the similarity matrix are constructed,

the Nyström method needs O(nl) space.

If using (19), in constructing R, the matrix-matrix product costs O((n− l)l2). The eigendecomposition of a dense

R requires O(l3). Finally, calculating Ṽ via (19) takes O(nlk). As generally l � n, the O((n − l)l2) cost is the

‡For similarity functions such as the Guassian in (1), if xi 6= xj , ∀i 6= j, then S is positive definite and so is Ā.

11

dominant term. Moreover, as this term is not needed when using (16), maintaining orthogonal Ṽ via (19) is more

expensive. Note that in Step 2 of Algorithm 2, one should calculate the diagonal matrix D by

BT (A−1b1) instead of (BTA−1)b1

to avoid a possible O((n− l)l2) operation.

D. A Comparison Between Two Approximation Methods

We have investigated how spectral clustering is performed with both sparse-matrix and Nyström approximations.

Here we discuss their differences and explain why we choose to parallelize the approach of using sparse similarity

matrices (t-nearest-neighbor).

From the clustering quality perspective, we suggest that the sparse-matrix approximation may give slightly better

results than the Nyström approximation. For the t-nearest-neighbor approach, small similarity values are discarded,

so insignificant relationships between data points are ignored. Therefore, using a sparse matrix does not lose much

information and may avoid retaining some noisy/inaccurate similarity values. In contrast, for the Nyström method,

there is no evidence indicating that approximation may provide higher quality results than using the fully dense

matrix. In fact, some studies [33], [43] show that approximation may yield inferior results. Their evaluations

apply the Nyström approximation to topics other than spectral clustering. Thus, we conduct in Section VI-A a

systematic comparison on clustering performance using real-world data. Results show that in general using the

t-nearest-neighbor sparse matrix is either as good as or slightly better than the Nyström approximation.

From the computation time perspective, the main disadvantage of the t-nearest-neighbor approximation is calcu-

lating the whole similarity matrix, which is O(n2d) in complexity (higher than O(nld) of Nyström). Thus Nyström

seems to be an attractive approach for large-scale problems. However, the more expensive computation of having

a sparse similarity matrix might be worth attempting because:

• The calculation of the similarity matrix can be easily parallelized without any communication cost. See details

in Section V-B.

• It is possible to reduce the O(n2d) cost by approximately finding t nearest neighbors.

• In finding the first k eigenvectors of L, Nyström may not be efficient. For the sparse-matrix approach, we

often set m = 2k for the Arnoldi length and invoke a sparse eigensolver. In contrast, for Nyström, we use a

dense eigensolver and may need l� k.

V. PARALLEL SPECTRAL CLUSTERING (PSC) USING A SPARSE SIMILARITY MATRIX

We now present PSC using t-nearest-neighbor sparse similarity matrices. We discuss challenges and then depict

our solutions. We have both Message Passing Interface (MPI) [37] and MapReduce [8] systems on our distributed

environments. Little has been discussed in this community about when to use which. We illustrate their differences

and present our implementation of the parallel spectral clustering algorithm.

12

TABLE III

SAMPLE MPI FUNCTIONS [37].

MPI_Bcast: Broadcasts information to all processes.

MPI_AllGather: Gathers the data contributed by each process on all processes.

MPI_Reduce: Performs a global reduction (e.g., sum) and returns the result to the specified root.

MPI_AllReduce: Performs a global reduction and returns the result on all processes.

A. MPI and MapReduce

MPI is a message passing library interface specification for parallel programming [37]. An MPI program is loaded

into the local memory of each machine, where every processor/process (each processor will be assigned just one

process for maximum performance) has a unique ID. MPI allows the same program to be executed on multiple

data. When needed, the processes can communicate and synchronize with others by calling MPI library routines.

Examples of MPI functions are shown in Table III.

Different from MPI, MapReduce is a Google parallel computing framework [8]. It is based on user-specified

map and reduce functions. A map function generates a set of intermediate key/value pairs. In the reduce phase,

intermediate values with the same key are passed to the reduce function. As an abstract programming model, different

implementations of MapReduce are possible depending on the architecture (shared or distributed environments).

The one considered here is the implementation used in Google distributed clusters. For both map and reduce

phases, the program reads and writes results to disks. With the disk I/O, MapReduce provides a fault tolerant

mechanism. That is, if one node fails, MapReduce restarts the task on another node. This framework allows people

with no experience in parallel computing to use large distributed systems. In contrast, MPI is more complicated

due to its various communication functions. Instead of using disk I/O, a function sends and receives data to and

from a node’s memory. MPI is commonly used for iterative algorithms in many numerical packages. Though MPI

itself does not perform logging for recovery, an application can employ check-points to achieve fault tolerance. In

general, MapReduce is suitable for non-iterative algorithms where nodes require little data exchange to proceed

(non-iterative and independent); MPI is appropriate for iterative algorithms where nodes require data exchange to

proceed (iterative and dependent).

In Algorithm 1, constructing the sparse similarity matrix is a non-iterative and independent procedure, thus we

consider MapReduce. As this step may be the most time consuming, having a fault tolerant mechanism is essential.

To find the first k eigenvectors, we consider PARPACK [30], a parallel ARPACK implementation based on MPI

as eigensolvers are iterative and dependent procedures. For k-means, we consider MPI as well.

We give some implementation details. To ensure fast file I/O, we use Google file system (GFS) [14] and store

data in the SSTable file format [5]. In contrast to traditional file I/O, where we sequentially read data from the

beginning of the file, using SSTable allows us to easily access any data point. This property is useful in calculating

the similarity matrix; see the discussion in Section V-B. Regarding MPI implementations, standard tools such

13

n

n/p

n/p

n/p

n n

Fig. 2. The similarity matrix is distributedly computed and stored on multiple machines.

as MPICH2§ [17] cannot be directly ported to our distributed system because the Google system uses its own

remote procedure call (RPC) protocol and system configurations. We modify the underlying communication layer

of MPICH2 to work in our system.

B. Similarity Matrix and Nearest Neighbors

To construct the sparse similarity matrix using t nearest neighbors, we perform three steps. First, for each data

point, we compute distances to all data points, and find its t nearest neighbors. Second, we modify the sparse matrix

obtained from the first step to be symmetric. Finally, we compute the similarities using distances. These three steps

are implemented using MapReduce, as described below.

Compute distances and find nearest neighbors. In this step, for each data point, we compute the distances

(Euclidean or cosine distances) to all data points and find the t nearest neighbors. Suppose p nodes are allocated

in a distributed environment. Figure 2 shows that we construct n/p rows of the distance matrix at each node. To

handle very large data sets, we need to carefully consider the memory usage in calculating the distances. In our

implementation, we do not assume that all data instances can be loaded into the memory of each single node in the

distributed environment. However, we require that each node can store n/p instances. This can be easily achieved

by increasing p, the number of nodes.

The map phase creates intermediate keys/values so that we make every n/p data points have the same key. In

the reduce phase, these n/p points are loaded to the memory of a node. We refer to them as the local data. We

then scan the whole data set: given an xi, we calculate ‖xi − xj‖ for all xj of the n/p local points. We use n/p

max heaps so each maintains a local data point’s t nearest neighbors so far. If the Euclidean distance is considered,

then

‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xT
i xj .

We precompute all ‖xj‖2 of local data to conserve time. The use of SSTable allows us to easily access arbitrary

data points in the file. Otherwise, in reading the n/p local points, we must scan the input file to find them. On

each node, we store n/p sparse rows in the compressed row format.

§http://www.mcs.anl.gov/research/projects/mpich2

http://www.mcs.anl.gov/research/projects/mpich2

14

Modify the distance matrix to be symmetric. The sparse distance matrix computed from the first step is not

symmetric. Note that xj being in the t-nearest-neighbor set of xi does not imply that xi is in the t-nearest-neighbor

set of xj . In this step, if either (i, j) or (j, i) element of the t-nearest-neighbor distance matrix contains the distance

between xi and xj , we set both positions to have the same value.

In the map phase, for each nonzero element in the sparse distance matrix, we generate two key/value pairs. The

first key is the row ID of the element, and the corresponding value is the column ID and the distance. The second

key is the column ID, and the corresponding value is the row ID and the distance. When the reduce function is

called, elements with the same key correspond to values in the same row of the desired symmetric matrix. These

elements are then collected. However, duplicate elements may occur, so we keep a hash map to do an efficient

search and deletion. Each row contains no more than 2t nonzero elements after symmetrization. As t � n, the

resulting symmetric matrix is still sparse.

Compute similarities. Although we can easily compute the similarities in the previous step, we use a separate

MapReduce step to selftune the parameter σ in (1) [51]. We consider the following similarity function:

Sij = exp

(
−||xi − xj ||2

2σiσj

)
. (20)

Suppose xi has t nearest neighbors. We can define σi as the average of t distance values. Alternatively, we can use

the median value of each row of the sparse similarity matrix. That is, σi = ||xi − xit ||, where xit is the bt/2cth

neighbor of xi by sorting distances to xi’s neighbors¶. For the implementation, in the map phase, we calculate the

average distance or the median value of each row of the distance matrix. Each reduce function obtains a row and

all parameters. The similarity values are then calculated by (20).

C. Parallel Eigensolver

After we have obtained the sparse similarity matrix, it is important to use a parallel eigensolver. Several works

have studied parallel eigendecomposition [21] [29] [30] [45] [46]. We consider PARPACK [30], a parallel ARPACK

implementation based on MPI. We let each MPI node store n/p rows of the matrix L as depicted in Figure 2. For

the eigenvector matrix V̄ (see (7)) generated during the call to ARPACK, we also split it into p partitions, each of

which possesses n/p rows. Note that if k (and m) is large, then V̄ , an Rn×m dense matrix, may consume more

storage space than the similarity matrix. Hence V̄ should be distributedly stored on different nodes. As mentioned in

Section III, major operations at each step of the Arnoldi factorization include a sparse and a few dense matrix-vector

multiplies, which cost O(nt) and O(nm), respectively. We parallelize these computations so that the complexity

of finding eigenvectors becomes:(
O(m3) + (O(

nm

p
) +O(

nt

p
))×O(m− k)

)
× (# restarted Arnoldi). (21)

The communication overhead between nodes occurs in the following three situations:

¶In the experiments, we use the average distance as our self-tuning parameter.

15

L × v

Fig. 3. Sparse matrix-vector product. We assume p = 5 here. L and v are respectively separated to five block partitions.

1) Sum p values and broadcast the result to p nodes. Details of these p values are not discussed here.

2) Parallel sparse matrix-vector product (8).

3) Parallel dense matrix-vector product: Sum p vectors of length m and broadcast the resulting vector to all p

nodes.

The first and the third cases transfer only short vectors, but the sparse matrix vector product may move a larger vector

v ∈ Rn to several nodes. Due to this high communication cost, we next discuss the parallel sparse matrix-vector

product in detail.

Figure 3 shows matrix L and vector v. Suppose p = 5. The figure indicates that both L and v are horizontally

split into five parts and each part is stored on one computer node. Take node 1 as an example. It is responsible for

performing

L1:n/p,1:n × v, (22)

where v = [v1, . . . , vn]T ∈ Rn. L1:n/p,1:n, the first n/p rows of L, is stored on node 1, but only v1, . . . , vn/p

are available there. Hence other nodes must send to node 1 the elements vn/p+1, . . . , vn. Similarly, node 1 should

dispatch its v1, . . . , vn/p to other nodes. This task is a gather operation in MPI (MPI_AllGather, see Table III):

data points on each node are gathered on all nodes. Note that one often assumes the following cost model for

transferring some data between two nodes [3]:

α+ β · (length of data transferred),

where α, the start-up time of a transfer, is a constant independent of the message size. The value β is the transfer

time per unit of data. Depending on α, β of the distributed environment and the size of data, one can select a

suitable algorithm for implementing the MPI_AllGather function. After some experiments, we consider the recursive

doubling algorithm [40]. The total communication cost to gather v on all nodes is

O

(
α · log(p) + β · p− 1

p
n

)
, (23)

where n is the length of the vector v. For this implementation, the number of machines must be a power of two.

Among various approaches discussed in [40] for the gather operation, (23) has the smallest coefficient related to α.

On our distributed environment (cheap PCs in a data center), the initial cost of any point-to-point communication

is expensive, so (23) is a reasonable choice.

16

Further reducing the communication cost is possible if we take the sparsity of L into consideration. The reduction

of the communication cost depends on the sparsity and the structure of the matrix. We defer this optimization to

future investigation.

D. Parallel k-means

Once the eigensolver computes the first k eigenvectors of the Laplacian matrix, the matrix V is distributedly

stored. Thus the normalized matrix U can be computed in parallel and stored on p local machines. Each row of

the matrix U is regarded as one data point in the k-means algorithm. We implement the k-means algorithm using

MPI. Several prior works have studied parallel k-means. For example, [6] [11] [18] [48].

To start the k-means procedure, the master machine chooses a set of initial cluster centers and broadcasts them

to all machines. Revisit Eq. (5). In the ideal case, the centers of data instances calculated based on the matrix U are

orthogonal to each other. Thus, an intuitive initialization of centers can be done by selecting a subset of U ’s n rows

whose elements are almost orthogonal [50]. To begin, we use the master machine to randomly choose a point as

the first cluster center. Then it broadcasts the center to all machines. Each machine identifies the most orthogonal

point to this center by finding the minimal cosine similarity between its points and the center. The cosine similarity

is defined as the inner product between two points. By collecting the p minimal cosine similarities, we choose the

most orthogonal point to the first center as the second center. This procedure is repeated to obtain k centers.

Once the initial centers are calculated, new labels of each node’s local data are assigned to clusters and local sums

of clusters are calculated without any inter-machine communication. The master machine then obtains the sum of all

points in each cluster to calculate new centers, and broadcasts them to all the machines. Most of the communication

occurs here, and this is a reduction operation in MPI (MPI_AllReduce, see Table III). The loss function (10) can

also be computed in parallel in a similar way. Therefore, the computation time for parallel k-means is reduced

to 1/p of that in (11). Regarding the communication, as local sums on each node are k vectors of length k, the

communication cost per k-means iteration is in the order of k2. Note that the MPI_AllReduce function used here

has a similar cost to the MPI_AllGather function discussed earlier. We explain below that the communication

bottleneck tends to occur in the sparse matrix-vector product (8) of eigendecomposition instead of the k-means

algorithm here. For each sparse matrix-vector product, we gather O(n) values after O(nt/p) operations on each

node. From Table II, there are O(m − k) × (# restarted Arnoldi) sparse matrix-vector products. For k-means, in

each iteration we transfer O(k2) values after O(nk2/p) operations in calculating the distance between n/p points

and k cluster centers. Assume there are (# k-means) iterations. In a typical run, (# restarted Arnoldi) is of the same

scale as (# k-means), so the total number of sparse matrix-vector products is bigger than the number of k-means

iterations. If n ≥ k2, then the communication overhead in eigendecomposition is more serious than k-means. We

will clearly observe this result in Section VI-B.

We summarize the computational time complexity of each step of the spectral clustering algorithm before and

after parallelization in Table IV.

17

TABLE IV

ANALYSIS OF THE COMPUTATIONAL TIME COMPLEXITY OF EACH STEP OF THE SPECTRAL CLUSTERING ALGORITHM BEFORE AND AFTER

PARALLELIZATION. NOTE THAT COMMUNICATION TIME IS EXCLUDED.

Spectral clustering Before parallelization After parallelization

Obtaining
O(n2d+ n2 log t) O(n2d

p
+ n2 log t

p
)

the similarity matrix

Finding first (O(m3) + (O(nm) +O(nt))×O(m− k)) (O(m3) + (O(nm
p

) +O(nt
p

))×O(m− k))

k eigenvectors ×(# restarted Arnoldi) ×(# restarted Arnoldi)

Performing k-means O(nk2)× (# k-means) O(nk2

p
)× (# k-means)

VI. EXPERIMENTS

We designed experiments to evaluate spectral clustering algorithms and investigated the performance of our

parallel implementation. Our experiments used three data sets: 1) Corel, a selected collection of 2, 074 images, 2)

RCV1 (Reuters Corpus Volume I), a filtered collection of 193, 844 documents, and 3) 2, 121, 863 photos collected

from PicasaWeb, a Google photo sharing product.

A. Clustering Quality

To justify our decision to sparsify the similarity matrix using t nearest neighbors, we compare it with the Nyström

method. As a side comparison, we also report the performance of traditional k-means. We use MATLAB to conduct

this experiment, while the parallel implementation (in C++) is used in Section VI-B. The MATLAB code is available

at

http://alumni.cs.ucsb.edu/~wychen/sc.html

1) Data Sets: We used two data sets with ground truth for measuring clustering quality.

Corel. It is an image data set which has been widely used by the computer vision and image-processing communities.

The images within each category were selected based on similar colors and objects. We chose 2, 074 images from

the Corel Image CDs to create 18 categories. For each image, we extracted 144 features including color, texture,

and shape as the image’s representation [24]. In the color channel, we divided color into 12 color bins including 11

bins for culture colors and one bin for outliers [41]. For each color bin, we recorded nine features to capture color

information at finer resolution. The nine features are color histogram, color means (in H, S, and V channels), color

variances (in H, S, and V channels), and two shape characteristics: elongation and spreadness. Color elongation

defines the shape of color, and spreadness defines how the color scatters within the image. In the texture channel,

we employed a discrete wavelet transformation (DWT) using quadrature mirror filters [36] due to its computational

efficiency. Each DWT on an image yielded four subimages including the scale-down image and its wavelets in three

orientations. We then obtained nine texture combinations from subimages for three scales (coarse, medium, fine)

and three orientations (horizontal, vertical, diagonal). For each texture, we recorded four features: energy mean,

http://alumni.cs.ucsb.edu/~wychen/sc.html

18

energy variance, texture elongation and texture spreadness. Finally, we performed feature scaling so features are on

the same scale. In conducting spectral clustering, the similarity functions (1) and (20) are considered according to

whether one assigns a fixed σ to all data or not.

RCV1. It is an archive of 804, 414 manually categorized newswire stories from Reuters Ltd [23]. The news

documents are categorized with respect to three controlled vocabularies: industries, topics and regions. Data were

split into 23, 149 training documents and 781, 256 test documents. In this experiment, we used the test set and

category codes based on the industries vocabulary. There are originally 350 categories in the test set. For comparing

clustering results, data which are multi-labeled were not considered, and categories which contain less than 500

documents were removed. We obtained 193, 844 documents in 103 categories. Each document is represented by a

cosine normalization of a log transformed TF-IDF (term frequency, inverse document frequency) feature vector.

2) Quality Measure: We used the image categories in the Corel data set and the document categories in the

RCV1 data set as the ground truths for evaluating cluster quality. We measured the quality via the Normalized

Mutual Information (NMI) and Clustering Accuracy between the produced clusters and the ground-truth categories.

NMI. The normalized mutual information between two random variables CAT (category label) and CLS (cluster

label) is defined as:

NMI(CAT; CLS) =
I(CAT; CLS)√
H(CAT)H(CLS)

, (24)

where I(CAT; CLS) is the mutual information between CAT and CLS. The entropies H(CAT) and H(CLS) are used

for normalizing the mutual information to be in the range of [0, 1]. In practice, we made use of the following

formulation to estimate the NMI score [38]:

NMI =

∑k
i=1

∑k
j=1 ni,j log

(
n·ni,j

ni·nj

)
√(∑

i ni log ni

n

) (∑
j nj log

nj

n

) , (25)

where n is the number of images/documents, ni and nj denote the number of images/documents in category i and

cluster j, respectively, and ni,j denotes the number of images/documents in category i as well as in cluster j. The

NMI score is 1 if the clustering results perfectly match the category labels, and the score is close to 0 if data are

randomly partitioned [54]. The higher the NMI score, the better the clustering quality.

Clustering Accuracy. Following [47], this measure to evaluate the cluster quality is defined as:

Accuracy =

∑n
i=1 δ(yi,map(ci))

n
, (26)

where n is the number of images/documents, yi and ci denote the true category label and the obtained cluster label

of image/document xi, respectively. δ(y, c) is a function that equals 1 if y = c and equals 0 otherwise. map(·) is

a permutation function that maps each cluster label to a category label, and the optimal matching can be found by

the Hungarian algorithm [34].

3) Results: We compared five different clustering algorithms, including

• k-means algorithm based on Euclidean distance (E-k-means).

19

TABLE V

NMI COMPARISONS OF FIVE ALGORITHMS. DETAILED SETTINGS ARE DESCRIBED IN SECTION VI-A.

Algorithms Corel RCV1

E-k-means 0.3689(±0.0122) 0.2737(±0.0063)

Nyström without orthogonalization 0.3496(±0.0140) 0.2567(±0.0052)

Nyström with orthogonalization 0.3623(±0.0084) 0.2558(±0.0031)

Fixed-σ SC 0.3811(±0.0050) 0.2861(±0.0010)

Selftune SC 0.3836(±0.0026) 0.2865(±0.0013)

TABLE VI

CLUSTERING ACCURACY COMPARISONS OF FIVE ALGORITHMS. DETAILED SETTINGS ARE DESCRIBED IN SECTION VI-A.

Algorithms Corel RCV1

E-k-means 0.3587(±0.0253) 0.1659(±0.0062)

Nyström without orthogonalization 0.3622(±0.0186) 0.1778(±0.0080)

Nyström with orthogonalization 0.3730(±0.0087) 0.1831(±0.0051)

Fixed-σ SC 0.3826(±0.0086) 0.1855(±0.0025)

Selftune SC 0.3851(±0.0164) 0.1842(±0.0021)

• spectral clustering using the Nyström method. We apply (16) to obtain the non-orthogonal eigenvectors

(Nyström without orthogonalization).

• spectral clustering using the Nyström method. We apply (19) to have orthogonal columns of Ṽ (Nyström with

orthogonalization).

• spectral clustering using t-nearest-neighbor similarity matrices. The similarity function (1) is used with a given

parameter σ (Fixed-σ SC).

• spectral clustering using t-nearest-neighbor similarity matrices. We apply a selftune technique (described in

Section V-B) on (20) to adaptively assign σ (Selftune SC).

All the above algorithms involve k-means procedures, for which we use the orthogonal initialization discussed in

Section V-D. We set the number of clusters to be 18 for the Corel data set and 103 for the RCV1 data set. We

reported the best clustering performance of Nyström (without/with orthogonalization) by searching a set of numbers

of random samples (20, . . . , 2000 for Corel, and 200, . . . , 3500 for RCV1) and a grid of σ values (10, . . . , 40 for

Corel, and 0.5, . . . , 2.5 for RCV1). Similarly, we reported the best clustering performance of SC (Fixed-σ and

Selftune) by searching a set of numbers of nearest neighbors (5, . . . , 200 for Corel, and 20, . . . , 200 for RCV1) for

both, and a grid of σ values (10, . . . , 40 for Corel, and 0.5, . . . , 2.5 for RCV1) for Fixed-σ SC. For Fixed-σ SC

and Selftune SC, the Arnoldi space dimension m was set to be two times the number of clusters for each data set.

Later in this paper we discuss the sensitivity of using various values of t, the number of nearest neighbors.

20

0 500 1000 1500 2000
0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

Number of random samples

N
M

I

With orthogonalization
Without orthogonalization

(a) Nyström: NMI score.

0 50 100 150 200
0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

Number of nearest neighbors

N
M

I

(b) Fixed-σ SC: NMI score.

0 500 1000 1500 2000
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Number of random samples

Ac
cu

ra
cy

With orthogonalization
Without orthogonalization

(c) Nyström: accuracy.

0 50 100 150 200
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Number of nearest neighbors

Ac
cu

ra
cy

(d) Fixed-σ SC: accuracy.

Fig. 4. A clustering quality comparison between Nyström and Fixed-σ SC using the Corel data set. For Nyström, we use 20, 50, 100, 200,

500, 1000, 1500, and 2000 as the number of random samples. For Fixed-σ SC, we use 5, 10, 15, 20, 50, 100, 150, and 200 as the number of

nearest neighbors.

Table V and Table VI present the comparison results. Each result is an average over ten runs. The results show

that spectral clustering algorithms using sparse similarity matrices (Fixed-σ SC and Selftune SC) slightly outperform

E-k-means and Nyström (without/with orthogonalization). Note that the sparse eigensolver (used for Fixed-σ SC

and Selftune SC) in MATLAB is also ARPACK. Using the same two data sets, we further compared Nyström

(without/with orthogonalization via (16) and (19), respectively) with Fixed-σ SC from three perspectives: NMI,

Clustering Accuracy and runtime. In this comparison, we change the number of selected samples for Nyström and

the number of nearest neighbors for Fixed-σ SC. We hope to see how parameters affect the clustering performance

for these two types of spectral clustering algorithms.

Figure 4 shows the NMI score and Clustering Accuracy using the Corel data set. When considering the clustering

quality in NMI, Nyström achieves stable results once l is large enough; however, more samples may slightly

21

0 500 1000 1500 2000
10−3

10−2

10−1

100

101

102

103

Number of random samples

S
ec

on
ds

Total time
Dense similarity sub−matrix
Eigendecomposition
K−means

(a) Nyström with orthogonalization.

0 500 1000 1500 2000
10−3

10−2

10−1

100

101

102

103

Number of random samples

S
ec

on
ds

Total time
Dense similarity sub−matrix
Eigendecomposition
K−means

(b) Nyström without orthogonalization.

0 50 100 150 200
10−3

10−2

10−1

100

101

102

103

Number of nearest neighbors

S
ec

on
ds

Total time
Sparse similarity matrix
Eigendecomposition
K−means

(c) Fixed-σ SC.

Fig. 5. A runtime comparison between Nyström and Fixed-σ SC using the Corel data set. We present the total time as well as the runtime

of each important step. For Nyström, we use 20, 50, 100, 200, 500, 1000, 1500, and 2000 as the number of random samples. For Fixed-σ SC,

we use 5, 10, 15, 20, 50, 100, 150, and 200 as the number of nearest neighbors.

deteriorate the clustering quality because of more noisy data. Similarly, more nearest neighbors may not improve

the clustering quality for Fixed-σ SC either, which performs the best when using 20 nearest neighbors. The worst

performance of Fixed-σ SC occurs at five nearest neighbors. The poor results obtained for a small number of

neighbors is because important relationships between points are not included. In general, Fixed-σ SC performs

slightly better than Nyström when an appropriate number of nearest neighbors is set. When considering the clustering

quality in Accuracy, Fixed-σ SC achieves a higher accuracy value with more nearest neighbors while Nyström gives

rather stable results. Similar to NMI, Fixed-σ SC with an appropriate number of nearest neighbors performs slightly

better than Nyström. Besides, Nyström using (16) (i.e., Ṽ ’s columns are not orthogonal) gives markedly worse NMI

and Clustering Accuracy than using (19) (i.e., Ṽ ’s columns are orthogonal).

Figure 5 reports the runtime using the Corel data set. We can make the following three observations. First,

Nyström is faster for obtaining the similarity matrix. For Nyström, the cost of calculating the similarity sub-matrix

is proportional to the number of random samples, but Fixed-σ SC needs to calculate all n2 similarity values.

Second, Nyström needs considerable eigendecomposition time if l, the number of random samples, is large. When

l is close to n, O(l3) becomes the dominant term in Table II. Thus, the total runtime of Nyström can be larger

than that of Fixed-σ SC. Third, constructing the similarity matrix dominates the runtime of Fixed-σ SC while

eigendecomposition dominates the runtime of Nyström. Additionally, in Fixed-σ, finding eigenvectors takes 6 to 25

restarted Arnoldi iterations based on different numbers of nearest neighbors.

Figure 6 and Figure 7 show the comparison results and runtime using the RCV1 data set, respectively. When

considering the clustering quality in NMI, Nyström is slightly worse than Fixed-σ SC if Fixed-σ SC is performed

with enough nearest neighbors, (i.e., ≥ 20). When considering the clustering quality in accuracy, Fixed-σ SC

achieves comparable performance to Nyström with orthogonalization and performs slightly better than Nyström

without orthogonalization. When considering the total runtime, Fixed-σ SC takes longer than Nyström as the time

22

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Number of random samples

N
M

I

With orthogonalization
Without orthogonalization

(a) Nyström: NMI score.

0 50 100 150 200
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Number of nearest neighbors

N
M

I

(b) Fixed-σ SC: NMI score.

0 500 1000 1500 2000 2500 3000 3500 4000
0.13

0.14

0.15

0.16

0.17

0.18

0.19

Number of random samples

A
cc

ur
ac

y

With orthogonalization
Without orthogonalization

(c) Nyström: accuracy.

0 50 100 150 200
0.13

0.14

0.15

0.16

0.17

0.18

0.19

Number of nearest neighbors

Ac
cu

ra
cy

(d) Fixed-σ SC: accuracy.

Fig. 6. A clustering quality comparison between Nyström and Fixed-σ SC using the RCV1 data set. For Nyström, we use 200, 500, 800,

1000, 1500, 2000, 2500, 3000, and 3500 as the number of random samples. For Fixed-σ SC, we use 20, 50, 75, 100, 150, and 200 as the

number of nearest neighbors.

for constructing a sparse similarity matrix, O(n2d + n2 log t), dominates the total runtime. When considering the

runtime for finding the first k eigenvectors, Nyström with orthogonal Ṽ is expensive if l ≥ 2, 000. With l � n,

O((n−l)l2) is the dominant term in Table II. In contrast, Nyström without orthogonalization gives comparable NMIs

against Nyström with orthogonalization in a short amount of time. The shorter runtime is because the approach

without orthogonalization does not need the O((n− l)l2) operation (see Table II). We also found that Fixed-σ SC

using 20 nearest neighbors took longer for the eigendecomposition than using more nearest neighbors. When t = 20,

we observed that the Laplacian matrix L has many zero eigenvalues. It is known that ARPACK faces difficulties

in such a situation‖. Additionally, in Fixed-σ, finding eigenvectors takes 9 to 48 restarted Arnoldi iterations based

‖ This is confirmed through some private communication with one ARPACK author.

23

0 500 1000 1500 2000 2500 3000 3500 4000
100

101

102

103

104

Number of random samples

S
ec

on
ds

Total time
Dense similarity sub−matrix
Eigendecomposition
K−means

(a) Nyström with orthogonalization.

0 500 1000 1500 2000 2500 3000 3500 4000
100

101

102

103

104

Number of random samples

S
ec

on
ds

Total time
Dense similarity sub−matrix
Eigendecomposition
K−means

(b) Nyström without orthogonalization.

0 50 100 150 200
100

101

102

103

104

Number of nearest neighbors

S
ec

on
ds

Total time
Sparse similarity matrix
Eigendecomposition
K−means

(c) Fixed-σ SC.

Fig. 7. A runtime comparison between Nyström and Fixed-σ SC using the RCV1data set. We present the total time as well as the runtime

of each important step. For Nyström, we use 200, 500, 800, 1000, 1500, 2000, 2500, 3000, and 3500 as the number of random samples. For

Fixed-σ SC, we use 20, 50, 75, 100, 150, and 200 as the number of nearest neighbors.

on different number of nearest neighbors.

Regarding memory use, Nyström consumes O(nl) memory while spectral clustering algorithms using sparse

similarity matrices consume O(nt + nm). As l is usually larger than t and m, Nyström may consume more

memory. In sum, spectral clustering via sparsifying the similarity matrix takes longer total runtime (including the

time for constructing the similarity matrix), but it may be more effective in finding clusters.

B. Speedup and Scalability in Distributed Environments

We used both the RCV1 data set and a PicasaWeb data set to conduct scalability experiments. PicasaWeb is an

online platform for users to upload, share and manage images. The PicasaWeb data set we collected consists of

2, 121, 863 images. For each image, we extracted 144 features and employed feature scaling as we did for the Corel

data set. The RCV1 data set used in Section VI-A can fit into the main memory of a single machine, whereas the

PicasaWeb data set cannot. For the PicasaWeb data set, we grouped the data into 1, 000 clusters, and the Arnoldi

length m is set to be 2, 000.

We ran experiments on up to 256 machines at our distributed data centers. While not all machines are identical,

each machine is configured with a CPU faster than 2GHz and memory larger than 4GBytes. Our experiments begin

with detailed runtime and speedup analysis by varying the number of machines. We discuss individual steps of

Algorithm 1 as well as the whole procedure. Next, we fix the number of machines and present speedup by varying

the problem size. Finally, the scalability of our implementation is investigated.

Calculating the similarity matrix. Table VII and VIII report the speedup for calculating a sparse similarity matrix

on RCV1 and PicasaWeb data sets, respectively. For the PicasaWeb data set, storing the similarity matrix and the

matrix V̄ ∈ Rn×m with m = 2, 000 requires more than 32GBytes of memory∗∗. This memory configuration is

∗∗ If we assume the double precision storage, we need 2× 106 × 2000× 8 = 32 GBytes.

24

TABLE VII

RCV1 DATA SET. RUNTIME FOR CALCULATING THE SPARSE SIMILARITY MATRIX ON DIFFERENT NUMBER OF MACHINES. n=193,844,

k=103, m=206, t=100.

Machines CompDistance Symmetric CompSimilarity Total Speedup

1 72088s 655s 182s 72925s 1

2 37084s 324s 100s 37508s 1.94

4 19338s 161s 83s 19582s 3.72

8 9765s 88s 68s 9921s 7.35

16 6376s 33s 28s 6437s 11.33

32 3110s 20s 18s 3148s 23.16

64 2064s 19s 17s 2100s 34.73

TABLE VIII

PICASAWEB DATA SET. RUNTIME FOR CALCULATING THE SPARSE SIMILARITY MATRIX ON DIFFERENT NUMBER OF MACHINES.

n=2,121,863, k=1,000, m=2,000, t=100.

Machines CompDistance Symmetric CompSimilarity Total Speedup

16 751912s 348s 282s 752542s 16.00

32 376591s 205s 205s 377001s 31.94

64 191691s 128s 210s 192029s 62.70

128 100918s 131s 211s 101260s 118.91

256 54480s 45s 201s 54726s 220.02

not available on off-the-shelf machines. We had to use at least sixteen machines to perform spectral clustering.

Therefore, we used sixteen machines as the baseline and assumed a speedup of 16. We separate the running time

into three parts according to the discussion in Section V-B: compute distances and find nearest neighbors, modify

the distance matrix to be symmetric, and compute similarities. The similarity matrix calculation involves little

communication between nodes. Thus the speedup is almost linear if machines have similar configurations and loads

(when we ran experiments). By using 256 machines and t = 100, the RCV1 data set takes 7.5 minutes†† and the

PicasaWeb data set takes 15.2 hours for obtaining the sparse similarity matrix.

First k eigenvectors and k-means. Here k-means refers to Step 6 in Algorithm 1. In Tables IX and X, we report

the speedup on the RCV1 data set for finding eigenvectors and conducting k-means, respectively. We separate

running time for finding eigenvectors into two parts: all dense operations and sparse matrix-vector products. Each

part is further separated into computation, communication (message passing between nodes) and synchronization

†† A sharp eyed reader may notice that using one machine may take much longer in data center than via MATLAB. This difference is because

we do not assume here that input data can be pre-loaded into the memory of one node (see our implementation details in Section V-A).

25

TABLE IX

RCV1 DATA SET. RUNTIME FOR FINDING THE FIRST k EIGENVECTORS ON DIFFERENT NUMBERS OF MACHINES. n=193,844, k=103,

m=206, t=100.

Dense matrix operations Sparse matrix
Total Speedup

within ARPACK vector product

Machines Comp Comm Sync Comp Comm Sync

1 475s 0s 0s 274s 0s 0s 749s 1

2 234s 2s 6s 150s 16s 6s 414s 1.81

4 112s 4s 5s 75s 24s 6s 226s 3.31

8 57s 5s 6s 39s 29s 5s 141s 5.33

16 28s 8s 5s 20s 34s 4s 99s 7.57

32 16s 11s 7s 12s 40s 5s 91s 8.23

64 8s 13s 7s 6s 44s 5s 83s 9.02

TABLE X

RCV1 DATA SET. RUNTIME FOR k-MEANS ON DIFFERENT NUMBER OF MACHINES. n=193,844, k=103, m=206, t=100.

Machines Comp Comm Sync Total Speedup

1 54.27s 0s 0s 54.27s 1

2 27.04s 0.25s 0.23s 27.52s 1.97

4 13.50s 0.45s 0.50s 14.45s 3.76

8 7.23s 0.72s 0.55s 8.50s 6.38

16 3.25s 0.99s 0.84s 5.08s 10.67

32 1.71s 1.46s 1.15s 4.32s 12.56

64 0.80s 1.78s 1.44s 4.02s 13.50

time (waiting for the slowest machine). As shown in Table IX, these two types of operations have different runtime

behaviors. Tables IX and X indicate that neither finding eigenvectors nor k-means can achieve linear speedup when

the number of machines is beyond a threshold. This result is expected due to communication and synchronization

overheads. Note that other jobs may be run simultaneously with ours on each machine, though we chose a data

center with a light load.

As shown in Table IX for the RCV1 data set, when the number of machines is small, most of the time is spent

on dense matrix operations, which are easy to parallelize. Two reasons explain why dense operations dominate this

computation: First, each step of the Arnoldi factorization takes several (usually four) dense matrix-vector products,

but only one sparse matrix-vector product. Second, we have m = 206 > t = 100, so each dense matrix-vector

product may take comparable time to a sparse one. When the number of machines increases, the computational

time decreases almost linearly. However, the communication cost of sparse matrix-vector products becomes the

bottleneck in finding the first k eigenvectors because a vector v ∈ Rn is gathered to all nodes. For dense matrix-

26

TABLE XI

PICASAWEB DATA SET. RUNTIME FOR FINDING THE FIRST k EIGENVECTORS ON DIFFERENT NUMBERS OF MACHINES. n=2,121,863,

k=1,000, m=2,000, t=100.

Dense matrix operations Sparse matrix
Total Speedup

within ARPACK vector product

Machines Comp Comm Sync Comp Comm Sync

16 18196s 118s 430s 3351s 2287s 667s 25049s 16.00

32 7757s 153s 345s 1643s 2389s 485s 12772s 31.38

64 4067s 227s 495s 913s 2645s 404s 8751s 45.80

128 1985s 347s 423s 496s 2962s 428s 6641s 60.35

256 977s 407s 372s 298s 3381s 362s 5797s 69.14

TABLE XII

PICASAWEB DATA SET. RUNTIME FOR k-MEANS ON DIFFERENT NUMBER OF MACHINES. n=2,121,863, k=1,000, m=2,000, t=100.

Machines Comp Comm Sync Total Speedup

16 18053s 29s 142s 18223s 16.00

32 9038s 36s 263s 9337s 31.23

64 4372s 46s 174s 4591s 63.51

128 2757s 79s 108s 2944s 99.04

256 1421s 91s 228s 1740s 167.57

vector products, the communication cost is less for vectors of size m, but it also takes up a considerable ratio of

the total time. For the total time, we can see that when 32 machines were used, the parallel eigensolver achieved

8.23 times speedup. When more machines were used, the speedup decreased. Regarding the computational time for

k-means, as shown in Table X, it is less than finding eigenvectors. When using more nodes, the communication

time for k-means did not increase as much as it did for finding eigenvectors. This observation is consistent with

the explanation in Section V-D.

Next, we looked into the speedup on the PicasaWeb data set. Tables XI and XII report the speedups for

finding eigenvectors and conducting k-means, respectively. Compared to the results with the RCV1 data set, here

computational time takes a much larger ratio of the total time in obtaining eigenvectors. As a result, we could

achieve nearly linear speedups for 32 machines. Even when using 256 machines, a speedup of 69.14 is obtained.

As in Table IX, the communication cost for sparse matrix-vector products dominates the total time when p is large.

This is due to the large α log p term explained in (23). If one has a dedicated cluster with a better connection

between nodes, then α is smaller and a higher speedup can be achieved. Additionally, finding eigenvectors takes 7

restarted Arnoldi iterations. For k-means, we achieve an excellent speedup. It is nearly linear up to p = 64.

End-to-end runtime and speedup. Table XIII and XIV show the end-to-end runtime on RCV1 and PicasaWeb data

27

TABLE XIII

RCV1 DATA SET. END-TO-END RUNTIME FOR PARALLEL SPECTRAL CLUSTERING ON DIFFERENT NUMBER OF MACHINES. n=193,844,

k=103, m=206, t=100.

Machines SimilarityMatrix Eigendecomp k-means Total Speedup

1 72925s 749s 54.27s 73728.27s 1

2 37508s 414s 27.52s 37949.52s 1.94

4 19582s 226s 14.45s 19822.45s 3.72

8 9921s 141s 8.50s 10070.50s 7.32

16 6437s 99s 5.08s 6541.08s 11.27

32 3148s 91s 4.32s 3243.32s 22.73

64 2100s 83s 4.02s 2187.02s 33.71

TABLE XIV

PICASAWEB DATA SET. END-TO-END RUNTIME FOR PARALLEL SPECTRAL CLUSTERING ON DIFFERENT NUMBER OF MACHINES.

n=2,121,863, k=1,000, m=2,000, t=100.

Machines SimilarityMatrix Eigendecomp k-means Total Speedup

16 752542s 25049s 18223s 795814s 16.00

32 377001s 12772s 9337s 399110s 31.90

64 192029s 8751s 4591s 205371s 62.00

128 101260s 6641s 2944s 110845s 114.87

256 54726s 5797s 1740s 62263s 204.50

sets, respectively. We can achieve near-linear speedup when using 8 machines on RCV1, and using 128 machines on

PicasaWeb. Additionally, larger data sets tend to achieve higher speedup when using the same number of machines

for parallelization.

Speedup versus data sizes. Figure 8(a) shows the speedup for varying data sizes on the RCV1 data set using 8

machines. We use three different data sizes: 48, 465, 96, 925, and 193, 844. We observe that the larger the data

set, the more speedup we can gain for both end-to-end and three individual steps. Because several computational

intensive steps grow faster than the communication cost, the larger the data set, there is more opportunity for

the parallelization to gain speedup. However, the speedup of eigendecomposition is lower than others. This is

because, when compared to other steps, the communication cost for eigendecomposition takes a higher ratio in

the runtime. Figure 8(b) shows the speedup of varying data sizes on the PicasaWeb data set using 64 machines.

We use three different data sizes: 530, 474, 1, 060, 938, and 2, 121, 863. Results are similar to those for the RCV1

data set. However, the speedup line for total time is not as close to that for the similarity matrix. This is because

eigendecomposition and k-means steps take a relatively larger portion of the total time on the PicasaWeb data.

Scalability. Due to the communication overhead, we have observed that under a given data size, the speedup goes

28

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

1

2

3

4

5

6

7

8

Data size

Sp
ee

du
p

Total time
Similarity matrix
Eigendecomposition
K−means

(a) RCV1: speedup versus data sizes using 8 machines.

0.5 1 1.5 2 2.5
x 106

35

40

45

50

55

60

65

Data size

Sp
ee

du
p

Total time
Similarity matrix
Eigendecomposition
K−means

(b) PicasaWeb: speedup versus data sizes using 64 machines.

Fig. 8. Speedup versus data sizes. For RCV1, we use 8 machines and three different data sizes: 48,465, 96,925, and 193,844. For PicasaWeb,

we use 64 machines and three different data sizes: 530,474, 1,060,938, and 2,121,863.

(16, 48,465) (32, 96,925) (64, 193,844)
(number of machines, data size)

Sp
ee

du
p

Total time
Similarity matrix
Eigendecomposition
K−means

25

24

23

22

(a) RCV1: scalability.

(64, 530,474) (128, 1,060,938) (256, 2,121,863)
(number of machines, data size)

Sp
ee

du
p

Total time
Similarity matrix
Eigendecomposition
K−means

28

27

25

26

(b) PicasaWeb: scalability.

Fig. 9. Scalability: speedup versus number of machines and data sizes. For RCV1, we use (16, 48465), (32, 96925), and (64, 193844) as

pairs of number of machines and data size. For PicasaWeb, we use (64, 530474), (128, 1060938), and (256, 2121863) as pairs of number of

machines and data size.

down as the number of machines increases. In the parallel computation community, researchers thus define the

scalability by taking the problem size into consideration. As defined in [16] [27], a parallel system is scalable if

the speedup can be kept constant as the number of machines and the data sizes are both increased. Figure 9(a)

presents the scalability on the RCV1 data set. The y-axis presents the the speedup, but in the x-axis, we check

three different pairs of number of machines and data size: (16, 48465), (32, 96925), and (64, 193844). Except for

eigendecomposition, the speedup of the whole procedure as well as each step is almost doubled when doubling both

number of machines and data size. That is, the curve has a constant slope of 2. Figure 9(b) presents the scalability

29

(a) Sample images via k-means.

(b) Sample images via spectral clustering.

Fig. 10. Clustering results via k-means and spectral clustering (PicasaWeb data set).

on the PicasaWeb data set. We use three different pairs of number of machines and data size: (64, 530474),

(128, 1060938), and (256, 2121863). Similarly, the speedup is doubled except for eigendcomposition. Overall, our

parallel implementation scales reasonably well as the number of machines and the data size both increase.

Sample clustering results. Figure 10 shows sample clusters generated by k-means and spectral clustering. The top

two rows are clusters generated by k-means, and the bottom two rows are obtained by spectral clustering. We find

two observations. First, spectral clustering seems to be better at finding similarities between images (i.e., lions and

leopards are clustered together as similar results). Second, spectral clustering discovers similarities between flowers

and groups them together more effectively than k-means.

VII. CONCLUSIONS

In this paper, we have investigated approaches for large-scale spectral clustering. In particular, we discuss and

compare two types of approaches: sparsifying the similarity matrix and the Nyström approximation. We then propose

a parallel implementation and evaluate its scalability. A slightly modified version of our code is available at

http://code.google.com/p/pspectralclustering/,

in which the construction of similarity matrix is implemented based on MPI instead of MapReduce. No parallel

algorithm can escape from Amdahl’s law. But we showed that the larger a data set, the greater the number of

machines that can be used to apply the parallel spectral clustering algorithm to obtain fast and high-quality clustering

performances. Looking forward, we plan to enhance our work to address several research issues.

http://code.google.com/p/pspectralclustering/

30

Very large number of clusters. A large k implies a large m in the process of Arnoldi factorization. Then O(m3)

for finding the eigenvalues of the dense matrix H becomes the dominant term in (9). How to efficiently handle the

case of large k is thus an interesting issue.

Clustering without eigendecomposition. As finding the first k eigenvectors of a Laplacian matrix is computationally

expensive, Dhillon et al. [10] propose a clustering approach without using eigendecomposition. Their method is

related to but different from the standard spectral clustering. Without the eigendecomposition step, it does not

produce a low dimensional representation of the data. In other words, their method does not conduct dimension

reduction as spectral clustering does. Moreover, they assume the availability of the similarity matrix, so the total

computational time may still be high. Since our approach can handle very large data sets, it is interesting to compare

the two approaches.

Approximate neighbors in obtaining the sparse similarity matrix. Exactly finding the t nearest neighbors can

be quite expensive. Alternatively, one can conduct an approximation. LSH (Locality-Sensitive Hashing) [15] and

Spill-tree [26] have been efficient in finding approximate nearest neighbors. However, these methods may trade

clustering quality for running time. It is interesting to investigate how these methods perform.

Nyström approximation with an adaptive selection of samples. In Section IV, we discuss a naive implementation

using random sampling. Several papers (e.g., [33], [53]) have developed advanced sampling techniques, which can

achieve comparable clustering results via a smaller subset of samples. It is unclear yet how they are compared with

spectral clustering using sparse similarity matrices. The parallelization of these adaptive sampling approaches is

also an interesting and challenging research issue.

In summary, this paper gives a general and systematic study of parallel spectral clustering. Despite the commu-

nication and synchronization overheads, we build a system to effectively cluster large-scale data in a distributed

computing environment.

ACKNOWLEDGMENTS

The authors thank Sanjiv Kumar, Xiaofei He, and Ling Huang for their helpful comments. The first author is

supported by NSF under grant IIS-0535085.

REFERENCES

[1] D. Achlioptas, F. McSherry, and B. Schölkopf. Sampling techniques for kernel methods. In Proceedings of NIPS, pages 335–342, 2002.

[2] F. R. Bach and M. I. Jordan. Learning spectral clustering. In Proceedings of NIPS, 2003.

[3] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. Geijn, and J. Watts. Interprocessor collective communication library (intercom). In

Proceedings of the Scalable High Performance Computing Conference, pages 357–364, 1994.

[4] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517, 1975.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed

storage system for structured data. In Proceedings of OSDI, pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.

[6] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. In

Proceedings of NIPS, pages 281–288, 2007.

31

[7] F. Chung. Spectral Graph Theory. Number 92 in CBMS Regional Conference Series in Mathematics. American Mathematical Society,

1997.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[9] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of SIGKDD, pages 269–274,

2001.

[10] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(11):1944–1957, 2007.

[11] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory multiprocessors. In Large-Scale Parallel Data Mining,

pages 245–260, 1999.

[12] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partitioning and data clustering. In

Proceedings of ICDM, 2001.

[13] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(2):214–225, 2004.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proceedings of SOSP, pages 29–43, New York, NY, USA, 2003.

ACM.

[15] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In M. P. Atkinson, M. E. Orlowska, P. Valduriez,

S. B. Zdonik, and M. L. Brodie, editors, Proceedings of VLDB, pages 518–529, 1999.

[16] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel Computing (2nd Edition). Addison Wesley, January 2003.

[17] W. Gropp, E. Lusk, and A. Skjellum. Using MPI-2: Advanced Features of the Message-Passing Interface. MIT Press„ 1999.

[18] A. Gürsoy. Data decomposition for parallel k-means clustering. In PPAM, pages 241–248, 2003.

[19] L. Hagen and A. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 11(9):1074–1085, 1992.

[20] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A Survey of Software for Sparse Eigenvalue Problems. Technical report, Universidad

Politecnica de Valencia, 2005.

[21] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions

on Mathematical Software, 31:351–362, 2005.

[22] R. B. Lehoucg, D. C. Sorensen, and C. Yang. ARPACK User’s Guide. SIAM, 1998.

[23] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine

Learning Research, 5:361–397, 2004.

[24] B. Li, E. Y. Chang, and Y.-L. Wu. Discovery of a perceptual distance function for measuring image similarity. Multimedia Systems,

8(6):512–522, 2003.

[25] R. Liu and H. Zhang. Segmentation of 3D meshes through spectral clustering. In Proceedings of Pacific Graphics, 2004.

[26] T. Liu, A. Moore, A. Gray, and K. Yang. An investigation of practical approximate nearest neighbor algorithms. In Proceedings of NIPS,

2004.

[27] I. M. Llorente, F. Tirado, and L. Vázquez. Some aspects about the scalability of scientific applications on parallel architectures. Parallel

Computing, 22(9):1169–1195, 1996.

[28] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007.

[29] O. A. Marques. BLZPACK: description and user’s guide. Technical Report TR/PA/95/30, CERFACS, Toulouse, France, 1995.

[30] K. Maschhoff and D. Sorensen. A portable implementation of ARPACK for distributed memory parallel architectures. In Proceeding of

Copper Mountain Conference on Iterative Methods, 1996.

[31] M. Meila and J. Shi. Learning segmentation by random walks. In Proceedings of NIPS, pages 873–879, 2000.

[32] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Proceedings of NIPS, pages 849–856, 2001.

[33] M. Ouimet and Y. Bengio. Greedy spectral embedding. In Proceedings of AISTAT, pages 253–260, 2005.

[34] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complexity. Dover, New York, 1998.

[35] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–

905, 2000.

32

[36] J. R. Smith and S.-F. Chang. Automated image retrieval using color and texture. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1996.

[37] M. Snir and S. Otto. MPI-The Complete Reference: The MPI Core. MIT Press, Cambridge, MA, USA, 1998.

[38] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning

Research, 3:583–617, 2002.

[39] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In Proceedings of CVPR, 2008.

[40] R. Thakur, R. Rabenseinfer, and W. Gropp. Optimization of collective communication operations in MPICH. International Journal of

High Performance Computing Applications, 19(1):49–66, 2005.

[41] S. Tong and E. Chang. Support vector machine active learning for image retrieval. Proceedings of ACM MM, pages 107–118, 2001.

[42] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Processing Letters, 40(4):175–179, 1991.

[43] C. K. I. Williams, C. E. Rasmussen, A. Schwaighofer, and V. Tresp. Observations on the Nyström method for Gaussian process prediction.

Technical report, University of Edinburgh, 2002.

[44] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. Proceedings of NIPS, pages 682–688, 2000.

[45] K. Wu and H. Simon. A Parallel Lanczos Method for Symmetric Generalized Eigenvalue Problems. Technical Report LBNL-42953,

Lawrence Berkeley National Laboratory, 1997.

[46] K. Wu and H. Simon. TRLAN user guide. Technical Report LBNL-41284, Lawrence Berkeley National Laboratory, 1999.

[47] M. Wu and B. Schölkopf. A local learning approach for clustering. In Proceedings of NIPS, pages 1529–1536, 2007.

[48] S. Xu and J. Zhang. A hybrid parallel web document clustering algorithm and its performance study. Journal of Supercomputing,

30(2):117–131, 2004.

[49] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In Proceedings of SIGIR, pages 267–273,

2003.

[50] S. X. Yu and J. Shi. Multiclass spectral clustering. In Proceedings of ICCV, page 313, 2003.

[51] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Proceedings of NIPS, pages 1601–1608. 2005.

[52] H. Zha, C. H. Q. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for k-means clustering. In Proceedings of NIPS, pages 1057–1064,

2001.

[53] K. Zhang, I. Tsang, and J. Kwok. Improved Nyström low-rank approximation and error analysis. In Proceedings of ICML, 2008.

[54] S. Zhong and J. Ghosh. A unified framework for model-based clustering. Journal of Machine Learning Research, 4:1001–1037, 2003.

	Introduction
	Spectral Clustering
	Basic Concepts
	Approximation of the Dense Similarity Matrix

	Spectral Clustering Using a Sparse Similarity Matrix
	Spectral Clustering Using Nyström Approximation
	Nyström Method
	Application to Spectral Clustering
	Computational Complexity and Memory Use
	A Comparison Between Two Approximation Methods

	Parallel Spectral Clustering (PSC) Using a Sparse Similarity Matrix
	MPI and MapReduce
	Similarity Matrix and Nearest Neighbors
	Parallel Eigensolver
	Parallel k-means

	Experiments
	Clustering Quality
	Data Sets
	Quality Measure
	Results

	Speedup and Scalability in Distributed Environments

	Conclusions
	References

