
Distributed Newton Methods for Regularized Logistic
Regression

Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin

Department of Computer Science
National Taiwan University, Taipei, Taiwan

{r01922139,d01944006,r01922136,cjlin}@csie.ntu.edu.tw

Abstract. Regularized logistic regression is a very useful classification method,
but for large-scale data, its distributed training has not been investigated much.
In this work, we propose a distributed Newton method for training logistic re-
gression. Many interesting techniques are discussed for reducing the communi-
cation cost and speeding up the computation. Experiments show that the proposed
method is competitive with or even faster than state-of-the-art approaches such
as Alternating Direction Method of Multipliers (ADMM) and Vowpal Wabbit
(VW). We have released an MPI-based implementation for public use.

1 Introduction
In recent years, distributed data classification becomes popular. However, it is known
that a distributed training algorithm may involve expensive communication cost be-
tween machines. The aim of this work is to construct a scalable distributed training
algorithm for large-scale logistic regression.

Logistic regression is a binary classifier that has achieved a great success in many
fields. Given a data set with l instances (yi,xi), i = 1, . . . , l, where yi ∈ {−1, 1} is
the label and xi is an n-dimensional feature vector, we consider regularized logistic
regression by solving the following optimization problem to obtain the model w.

minw
1
2‖w‖

2 + C
∑l
i=1 log σ(yiw

Txi), (1)

where σ(yiwTxi) = 1 + exp(−yiwTxi) and C is the regularization parameter.
In this paper, we design a distributed Newton method for logistic regression. Many

algorithmic and implementation issues are addressed in order to reduce the communi-
cation cost and speed up the computation. For example, we investigate different ways
to conduct parallel matrix-vector products and discuss data formats for storing feature
values. Our resulting implementation is experimentally shown to be competitive with or
faster than ADMM and VW, which were considered state-of-the-art for distributed ma-
chine learning. Recently, Lin et al. [12] implement a variant of our approach on Spark1

through private communication, but they mainly focus on the efficient use of Spark.
This paper is organized as follows. Section 2 discusses existing approaches for dis-

tributed data classification. In Section 3, we present our implementation of a distributed
Newton method. Experiments are in Section 4 while we conclude in Section 5.

1 https://spark.apache.org/

https://spark.apache.org/

2 Zhuang et al.

2 Existing Methods for Distributed Classification
Many distributed algorithms have been proposed for linear classification. ADMM has
recently emerged as a popular method for distributed convex optimization. Although
ADMM is a known optimization method for decades, only recently some (e.g., [3, 19])
show that it is particularly suitable for distributed machine learning. Zinkevich et al.
[20] proposed a way to parallelize stochastic gradient methods. Besides, parallel coor-
dinate descent methods have been considered for linear classification (e.g., [2, 4, 14]).
Agarwal et al. [1] recently report that the package VW [9] is scalable and efficient in
distributed environments. VW applies a stochastic gradient method in the beginning,
then switches to parallel LBFGS [13] for a faster final convergence.

In the rest of this section, we describe ADMM and VW because they are considered
state-of-the-art and therefore are involved in our experiments.
2.1 ADMM for Logistic Regression
Zhang et al. [19] apply ADMM on linear support vector machine with squared hinge
loss. Here we modify it for logistic regression. Assume data indices {1, . . . , l} are par-
titioned to J sets M1, . . . ,MJ to indicate data on J machines. We can rewrite the
problem (1) to the following equivalent form.

minw1,...,wJ ,z
1

2
‖z‖2 + C

∑J
j=1

∑
i∈Mj

log σ(yiw
T
j xi)

subject to z = wj , j = 1, . . . , J.
(2)

All optimal z, w1, . . . ,wJ are the same as the solution of the original problem (1).
ADMM repeatedly performs (3)-(5) to update primal variablesw and z, and Lagrangian
dual variable µ using the following rules.

wk+1
j = argminwj

ρ
2‖wj − zk − µkj ‖2 + C

∑
i∈Mj

log σ(yiw
T
j xi),

(3)

zk+1 = argminz
1
2‖z‖

2 + ρ
2

∑J
j=1 ‖z −w

k+1
j ‖2 + ρ

∑J
j=1(µ

k
j)
T (z −wk+1

j),

(4)

µk+1
j = µk+1

j + zk+1 −wk+1
j , (5)

where ρ > 0 is a chosen penalty parameter. Depending on local data, the local model
wj on the jth machine can be independently updated using (3). To calculate the closed-
form solution of z in (4), each machine must collect local models wj ,∀j, so an O(n)
amount of local data from each machine is communicated across the network. The
iterative procedure ensures that under some assumptions, as k →∞, {zk} approaches
an optimum of (1).

Recall that the communication in (4) involves O(n) data per machine. Obviously
the cost is high for a data set with a huge number of instances (i.e., n� l). Fortunately,
Boyd et al. [3] mention that splitting the data set across its features can transform the
scale of the communicated data to O(l). For example, if we have J machines, the data
matrix X is partitioned to X1, . . . , XJ . Note that

X = [x1, . . . ,xl]
T = [X1, . . . , XJ].

However, the optimization process becomes different from (2)-(5) [3].

Distributed Newton Methods for Regularized Logistic Regression 3

2.2 VW for Logistic Regression
VW [1] is a machine learning package supporting distributed training. Firstly, by using
only local data at each machine, it applies stochastic gradient method with adaptive
learning rate [5]. Then, to get a faster convergence, VW weightedly averages the model
as the initial solution for the subsequent quasi Newton method [13] on the whole data.
The stage of applying stochastic gradient updates goes through all local data once for
approximately solving the following sub-problem.∑

i∈Mj
(12‖w‖

2 + C log σ(yiw
Txi)).

In the second stage, the objective function of (1) is considered and the quasi Newton
method applied is LBFGS, which uses m vectors to approximate inverse Hessian (m is
a user-specific parameter). To support both numerical and string feature indices in the
input data, VW uses feature hashing to have a fast feature lookup. That is, it applies a
hash function on the feature index to generate a new index for that feature value.

We discuss the communication cost of VW, which supports only the instance-wise
data split. For the stage of running a stochastic gradient method, there is no communi-
cation until VW weightedly averages local wj ,∀j, where O(n) data on each machine
must be aggregated. For LBFGS, it collects O(n) results on each machine to calcu-
late the function value and the gradient. Therefore, the communication cost per LBFGS
iteration is similar to that of each ADMM iteration under the instance-wise data split.

3 Distributed Newton Methods
In this section, we describe our proposed implementation of a distributed Newton method.
3.1 Newton Methods
We denote the objective function of (1) as f(w). At each iteration, a Newton method
updates the current model w by

w ← w + s, (6)

where s, the Newton direction, is obtained by minimizing

mins q(w), q(w) = ∇f(w)Ts+ 1
2s
T∇2f(w)s. (7)

Because the Hessian matrix ∇2f(w) is positive definite, we can solve the following
linear system instead.

∇2f(w)s = −∇f(w). (8)

For data with a huge number of features, ∇2f(w) becomes too large to be stored.
Hessian-free methods have been developed to solve (8) without explicitly forming
∇2f(w). For example, Keerthi and DeCoste [8] and Lin et al. [11] apply conjugate
gradient (CG) methods to solve (8). CG is an iterative procedure that requires a Hessian-
vector product∇2f(w)v at each step. For logistic regression, we note that

∇2f(w)v = v + CXT (D(Xv)), (9)

where D is a diagonal matrix with

Dii =
σ(yiw

Txi)− 1

σ(yiwTxi)2
.

4 Zhuang et al.

Xiw,1

Xiw,2

Xiw,3

(a) Instance-wise (IW)

Xfw,1Xfw,2Xfw,3

(b) Feature-wise (FW)
Fig. 1: Two methods to distributedly store training data.

From (9), we can clearly see that a sequence of matrix-vector products is sufficient
to finish the Hessian-vector product. Because ∇2f(w) is not explicitly formed, the
memory difficulty is alleviated.

The update (6) does not guarantee the convergence to an optimum, so we apply a
trust region method [11]. A constraint ‖s‖2 ≤ ∆ is added to (7), where ∆ is called the
radius of the trust region. At each iteration, we check the ratio ρ in (10) to ensure the
reduction of the function value.

ρ =
f(w + s)− f(s)

q(w)
. (10)

If ρ is not large enough, then s is rejected and w is kept. Otherwise, w is updated by
(6). Then, the radius ∆ is adjusted based on ρ [11].

Although Hessian-vector products are the main computational bottleneck of the
above Hessian-free approach, we note that in Newton methods other operations such
as function and gradient evaluations are also important. For example, the function value
in (1) requires the calculation of Xw. Based on this discussion, we can conclude that a
scalable distributed Newton method relies on the effective parallelization of multiplying
the data matrix with a vector. We will discuss more details in the rest of this section.
3.2 Instance-wise and Feature-wise Data Splits
Following the discussion in Section 2.1, we may split training data instance-wisely or
feature-wisely to different machines. An illustration is in Figure 1, in which Xiw,j or
Xfw,j represents the jth segment of data stored in the jth machine. We will show that
the two splits lead to different communication cost. Subsequently, we use “IW/iw” and
“FW/fw” to denote instance-wise and feature-wise splits.

To discuss the distributed operations easily, we use vector notation to rewrite (1) as

f(w) =
1

2
‖w‖2 + C log(σ(Y Xw)) · e, (11)

whereX and Y are defined in Section 2.1, log(·) and σ(·) are component-wisely applied
to a vector, and “·” stands for a dot product. In (11), e ∈ Rn×1 is a vector of all ones.
Then the gradient can be represented as

∇f(w) = w + C(Y X)T (σ(Y Xw)−1 − e). (12)

Next we discuss details of distributed operations under the two different data splits.
Instance-wise Split: Based on (9)-(12), the distributed form of function, gradient val-
ues, and Hessian-vector products can be written as

f(w) = 1
2‖w‖

2 + C
⊕J

j=1 log(σ(YjXiw,jw)) · ej , (13)

Distributed Newton Methods for Regularized Logistic Regression 5

∇f(w) = w + C
⊕J

j=1(YjXiw,j)
T (σ(YjXiw,jw)−1 − ej), (14)

and
∇2f(w)v = v + C

⊕J
j=1X

T
iw,jDjXiw,jv, (15)

where Yj , ej , and Dj are respectively the sub-matrix, the sub-vector, the sub-matrix of
Y , e, and D corresponding to instances in the jth machine. We use

⊕
to denote an all-

reduce operation [15] that collects results from all machines and redistributes the sum
to them. For example,

⊕J
j=1 log(σ(YjXiw,jw)) means that each machine calculates its

own log(σ(YjXiw,jw)), and then an all-reduce summation is performed.
Feature-wise Split: We notice that

Xw =
⊕J

j=1Xfw,jwj , (16)

where wj is a sub-vector of w corresponding to features stored in the jth machine.
Therefore, in contrast to IW, each machine maintains only a sub-vector of w. The situ-
ation is similar to other vectors such as s. However, to calculate the function value for
checking the sufficient decrease (10), ‖wj‖2,∀j must be summed and then distributed
to all machines. Therefore, the function value is calculated by

1
2

⊕J
j=1 ‖wj‖2 + C log(σ(Y

⊕J
j=1Xfw,jwj)) · e. (17)

Similarly, each machine must calculate part of the gradient and the Hessian-vector prod-
uct:

∇f(w)fw,p = wp + C(Y Xfw,p)
T (σ(Y

⊕J
j=1Xfw,jwj)

−1 − e) (18)

and
(∇2f(w)v)fw,p = vp + CXT

fw,pD
⊕J

j=1Xfw,jvj ,

where, like w, only a sub-vector vp of v is needed at the pth machine.
We notice that some all-reduce operations are needed for inner products in Newton

methods. For example, to evaluate the value in (7) we must obtain

∇f(w)Ts =
⊕J

j=1∇f(w)Tfw,jsj , (19)

where ∇f(w)fw,j and sj are respectively the sub-vectors of ∇f(w) and s stored at
the jth machine. The communication cost is not a concern because (19) sums J values
rather than vectors in (16). Another difference from the IW approach is that the label
vector y is stored in every machine because of the diagonal matrix Y in (17) and (18). It
is worth mentioning that to save computational and communication cost, we can cache⊕J

j=1Xfw,jwj obtained in (17) for (18).
Analysis: To compare the communication cost between IW and FW, in Table 1 we
show the number of operations at each machine and the amount of data sent to all
others. From Table 1, to minimize the communication cost, IW and FW should be used
for l � n and n � l, respectively. We will confirm this property through experiments
in Section 4.

6 Zhuang et al.

of operations # data sent to other machines
IW FW IW FW

f(w) O(nnz/J) O(nnz/J) O(1) O(l)
∇f(w) O(nnz/J) O(nnz/J) O(n) 0

∇2f(w)v O(nnz/J) O(nnz/J) O(n) O(l)
inner product O(n) O(n/J) 0 O(1)

Table 1: A comparison between IW and FW on the amount of data distributed from one
machine to all others. J is the number of machines and nnz is the number of non-zero
elements in the data matrix. For FW, the calculation of ∇f(w) does not involve com-
munication because we mentioned that

⊕J
j=1Xfw,jwj is available while calculating

f(w).

3.3 Other Implementation Techniques
Load Balancing: The parallel matrix-vector product requires that all machines finish
their local tasks first. To reduce the synchronization cost, we should let machines have
a similar computational load. Now the computational cost is related to the number of
non-zero elements, so we split data in a way such that each machine contains data of a
similar number of non-zero values.
Data Format: Lin et al. [11] discuss two approaches to store the sparse data matrix
X in an implementation of Newton methods: compressed sparse row (CSR) and com-
pressed sparse column (CSC). They conclude that because of the possibility of storing
a whole row or column into a higher-level memory (e.g., cache), CSR and CSC are
more suitable for l � n and n � l, respectively. Because we split data so that each
machine has a similar number of non-zero elements, the number of columns/rows of the
sub-matrix may vary. In our implementation, we dynamically decide the sparse format
based on if the sub-matrix’s number of rows is greater than columns.
Speeding Up Hessian-vector Product: Instead of sequentially calculatingXv,D(Xv),
and XT (D(Xv)) in (9), we can re-write XTDXv as∑l

i=1Dii(xi(x
T
i v)). (20)

Then the data matrixX is accessed only once rather than twice. However, this technique
can only be applied for instance-wisely split data in the CSR format. If the data is split
by features, then calculating each xTi v needs an all-reduce operation. The l all-reduce
summations in (20) cause too high communication cost in practice.

4 Experiments
In this section, we begin with describing a specific Newton method used for our imple-
mentation. Then we evaluate techniques proposed in Section 3, followed by a detailed
comparison between ADMM, VW, and the distributed Newton method on objective
function values and test accuracy.
4.1 Truncated Newton Method
In Section 3.1, using CG to find the direction s may struggle with too many iterations.
To alleviate this problem, we consider an approach by Steihaug [16] that employs CG to
approximately minimize (7) under the constraint of s being in the trust region. With the
Newton direction s obtained approximately, the technique is called a truncated Newton

Distributed Newton Methods for Regularized Logistic Regression 7

Data set l n #nonzeros C
Communication Total

IW FW IW FW
yahoo-japan 140,963 832,026 18,738,315 0.5 166.22 13.78 169.73 15.15
yahoo-korea 368,444 3,052,939 125,190,807 2 1,185.32 189.72 1,215.76 207.53
url 2,396,130 3,231,961 277,058,644 2 9,727.89 6,995.23 10,194.23 7,286.63
epsilon 500,000 2,000 1,000,000,000 2 2.16 184.03 11.37 195.26
webspam 350,000 16,609,143 1,304,697,446 32 8,909.51 159.83 9,179.42 199.36
Table 2: Left: The statistics of each data set. Right: Communication and total running
time (in seconds) of the distributed Newton method using IW and FW strategies.

method. Lin et al. [11] have applied this method for logistic regression on a single
machine. Here we follow their detailed settings for our distributed implementation.
4.2 Experimental Settings
1. Data Sets: We use five data sets listed in Table 2 for experiments, and randomly

split them into 80%/20% as training set and test set respectively (an exception is
epsilon because it has official training/test sets). Except yahoo-japan and yahoo-
korea, all others are publicly available.2

2. Platform: We use 32 machines in a local cluster. Each machine has an 8-core pro-
cessor with computing power equivalent to 8 × 1.0GHz 2007 Xeon, and 16GB
memory. The network bandwidth is approximately 1Gb/s.

3. Parameters: For C in (1), we tried different values in {2−5, 2−3, . . . , 25}, and use
the one that leads to the best performance on the test set.

4.3 IW versus FW
This subsection presents a comparison between two different data splits. We run the
Newton method until the following stopping condition is satisfied:

‖∇f(w)‖ ≤ εmin(pos, neg)
l

‖∇f(0)‖, (21)

where ε = 10−6 and pos/neg are the number of positive and negative data.
In Table 2, we present both communication and total training time. Results are con-

sistent with our analysis in Table 1. For example, IW is better than FW for epsilon,
which has l � n. On the contrary, FW is superior for webspam because l � n.
This experiment reflects that a suitable data split strategy can significantly reduce the
communication cost.

By the difference between total and communication time in Table 2, we have the
time for computation and synchronization. It is only similar but not the same for IW
and FW because of the variance of the cluster’s run-time behavior and the algorithmic
differences.
4.4 Comparison Between State-of-the-art Methods on Function Values
We include the following methods for the comparison.

• the distributed trust-region Newton method (TRON): It is implemented in C++
with OpenMPI [7].

2 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

8 Zhuang et al.

• ADMM: We implement ADMM using C++ with OpenMPI [7]. Following Zhang
et al. [19], the sub-problem (3) is approximately solved by a coordinate descent
method [17] with a fixed number of iterations, where the number of iterations is
decided by a validation procedure. The parameter ρ in (3) follows the setting in [19].

• VW (version 7.6): The package uses sockets for communications and synchroniza-
tion. Because VW uses the hashing trick for the features indices, hash collisions may
cause not only different training/test sets but also worse accuracy. To reduce the pos-
sibility of hash collisions, we set the size of the hashing table larger than the original
data sets.3 Although the data set may be slightly different from the original one, we
will see that the conclusion of our experiments is not affected. Besides, we observe
that the default setting of running a stochastic gradient method and then LBFGS is
very slow on webspam, so for this problem, we apply only LBFGS.4 Except C and
the size of features hashing, we use the default parameters in VW.

In Figure 2, we compare VW, ADMM, and the distributed Newton method by
checking the relation between the training time and the relative distance from the cur-
rent function value to the optimum:

|f(w)− f(w∗)|
|f(w∗)|

.

The reference optimal w∗ is obtained approximately by running the Newton method
with a very small stopping tolerance.5 We present results of ADMM and distributed
Newton using both instance-wise and feature-wise splits. For the sparse format in Sec-
tion 3.3, the distributed Newton method dynamically chooses CSC or CSR, while ADMM
uses CSC because of the requirement of the coordinate descent method for the sub-
problem (3).

Results in Figure 2 indicate that with suitable data splits, the distributed Newton
method converges faster than ADMM and VW. Regarding IW versus FW, when l �
n, an instance-wise split is more suitable for the distributed Newton method, while
a feature-wise split is better for n � l. This observation is consistent with Table 2.
However, the same result does not hold for ADMM. One possible explanation is that
regardless of data splits, the optimization processes of the distributed Newton method
are exactly the same. In contrast, ADMM’s optimization processes are different under
IW and FW strategies [3].

In Figure 2, a horizontal line indicates that the stopping condition of (21) with ε =
0.01 has been satisfied. This condition, used as the default condition in the Newton-
method implementation of the software LIBLINEAR [6], shows that a model having
similar prediction capability to the optimal solution has been obtained. In Figure 2,

3 We select 220, 222, 222, 212, and 225 as the size of the hashing table for yahoo-japan, yahoo-
korea, url, epsilon, and webspam respectively.

4 We observe that the vector w obtained after running stochastic gradient methods is a poor
initial point for LBFGS to have slow convergence. It is not entirely clear what happened, so
further investigation is needed.

5 The optimal solution of VW with hashing tricks may be different from the other two methods,
so we obtain its w∗ separately. Because of using the relative distance, we can still compare the
convergence speed of different methods.

Distributed Newton Methods for Regularized Logistic Regression 9

0 20 40 60 80 100
10

−5

10
0

Time (sec.)

R
e
la

ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 d

if
fe

re
n
c
e

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(a) yahoo-japan

0 200 400 600 800

10
−5

10
0

Time (sec.)

R
e
la

ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 d

if
fe

re
n
c
e

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(b) yahoo-korea

0 100 200 300 400 500
10

−4

10
−2

10
0

Time (sec.)

R
e
la

ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
 d

if
fe

re
n
c
e

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(c) epsilon

0 1000 2000 3000 4000 5000
10

−2

10
−1

10
0

10
1

Time (sec.)
R

e
la

ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(d) url

0 1000 2000 3000 4000 5000
10

−4

10
−2

10
0

10
2

Time (sec.)

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(e) webspam
Fig. 2: A comparison on the relative difference to the optimal objective function value.
The dotted line indicates the stopping conditions (21) with ε = 0.01 has been achieved.

ADMM can quickly reach the horizontal line for some problems, but is slow for others.

4.5 Comparison Between State-of-the-art Methods on Test Accuracy
We present in Figure 3 the relation between the training time and

accuracy− best accuracy
best accuracy

,

where best accuracy is the best final accuracy obtained by all methods. In the early
stage ADMM is better than the other two, while the distributed Newton method gets
the final stable performance more quickly on all problems except url.
4.6 Speedup
Following Agarwal et al. [1], we compare the speedup of ADMM, VW, and the dis-
tributed Newton method for obtaining a fix test accuracy by varying the number of
machines. Results are in Figure 4.

We consider the two largest sets epsilon and webspam for experiments. They have
l� n and n� l, respectively. For ADMM and the distributed Newton method, we use

10 Zhuang et al.

0 50 100 150
−20

−15

−10

−5

0

x 10
−3

Training Time (sec.)

T
e
s
ti
n
g
 a

c
c
u
ra

c
y
 d

if
fe

re
n
c
e
 (

%
)

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(a) yahoo-japan

0 100 200 300 400 500
−0.2

−0.15

−0.1

−0.05

0

Training Time (sec.)

T
e

s
ti
n

g
 a

c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 (
%

)

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(b) yahoo-korea

0 20 40 60 80 100
−0.05

−0.04

−0.03

−0.02

−0.01

0

Training Time (sec.)

T
e

s
ti
n

g
 a

c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 (
%

)

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(c) epsilon

0 200 400 600 800 1000
−0.04

−0.03

−0.02

−0.01

0

Training Time (sec.)
T

e
s
ti
n
g
 a

c
c
u
ra

c
y
 d

if
fe

re
n
c
e
 (

%
)

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(d) url

0 500 1000 1500 2000
−20

−15

−10

−5

0
x 10

−3

Training Time (sec.)

T
e

s
ti
n

g
 a

c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 (
%

)

VW
ADMM−FW
ADMM−IW
TRON−FW
TRON−IW

(e) webspam
Fig. 3: A test-accuracy comparison among ADMM, VW and the distributed Newton
method with different data split strategies. The dotted horizontal line indicates 0 differ-
ence to the final accuracy.

the data split strategy leading to the better convergence in Figure 2. Figure 4 shows that
for epsilon (l � n), VW and the distributed Newton method yield a better speedup
than ADMM as the number of machines increases, while for webspam (n � l), the
distributed Newton method is better than the other two.

For the problem webspam, the speedup of VW is much worse than epsilon and
problems in [1], so we conduct some investigation. For epsilon and data in [1], they
have l � n. Thus we suspect that because n � l for webspam and VW considers an
instance-wise split, VW suffers from high communication cost. To confirm this point,
we conduct an additional experiment in Figure 4(b). A special property of the problem
webspam is that it actually has only 680,715 non-zero feature columns, although its
feature indices are up to 16 million. We generate a new set by removing zero columns
and rerun VW.6 The result, indicated as VW* in Figure 4(b), clearly shows that the
speedup is significantly improved.

6 The hash size is reduced correspondingly from 225 to 220.

Distributed Newton Methods for Regularized Logistic Regression 11

1 2 4 8 16 32
0

5

10

15

20

Number of machines
S

p
e
e
d
u
p

VW
ADMM−IW
TRON−IW

(a) epsilon

4 8 16 32
0

1

2

3

4

Number of machines

S
p
e
e
d
u
p

VW
VW*
ADMM−IW
TRON−FW

(b) webspam
Fig. 4: The speedup of different training methods.

0 5 10 15 20

−6

−4

−2

0

Iterations

R
e

la
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

Nodes−1

Nodes−2

Nodes−4

Nodes−8

Nodes−16

Nodes−32

(a) epsilon

0 20 40 60
−6

−4

−2

0

2

4

Iterations
R

e
la

ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
 d

if
fe

re
n

c
e

Nodes−4

Nodes−8

Nodes−16

Nodes−32

(b) webspam
Fig. 5: The relation between the number of ADMM iterations and the decrease of the
function value. We show results of using different numbers of machines.

Next, we investigate more about the unsatisfactory speedup of ADMM. Because
of parallelizing only the matrix-vector products, the numbers of iterations in VW and
the distributed Newton method are independent of the number of machines. In contrast,
ADMM’s number of iterations may significantly vary, because the reformulation in (2)
is related to the number of machines. In Figure 5, we present the relation between the
number of ADMM iterations and the relative difference to the optimum. It can be seen
that as the number of machines increases, the higher number of iterations comes with
more computational and communication costs. Thus the speedup of ADMM in Figure
4 is not satisfactory.

5 Conclusion

To the best of our knowledge, this work is the first comprehensive study on the dis-
tributed Newton method for regularized logistic regression. We carefully address im-
portant issues for distributed computation including communication and memory local-
ity. An advantage of the proposed distributed Newton method and VW over ADMM is
that the optimization processes are independent of the distributed configuration. That is,
the number of iterations remains the same regardless of the number of machines. Our
experiment shows that in a practical distributed environment, the distributed Newton
method is faster and more scalable than ADMM and VW that are considered state-of-
the-art for real-world problems.

However, because of requiring differentiability, Newton methods are more restric-
tive than ADMM. For example, if we consider L1-regularization by replacing ‖w‖2/2

12 Zhuang et al.

in (1) with ‖w‖1, the optimization problem becomes non-differentiable, so Newton
methods cannot be directly applied.7

Our experimental code is available at (removed for the blind review requirements).

Bibliography
1. Agarwal, A., Chapelle, O., Dudik, M., and Langford, J. (2014). A reliable effective terascale

linear learning system. JMLR, 15:1111–1133.
2. Bian, Y., Li, X., Cao, M., and Liu, Y. (2013). Bundle CDN: a highly parallelized approach for

large-scale l1-regularized logistic regression. In ECML/PKDD.
3. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Found. Trends Mach.
Learn., 3(1):1–122.

4. Bradley, J. K., Kyrola, A., Bickson, D., and Guestrin, C. (2011). Parallel coordinate descent
for l1-regularized loss minimization. In ICML.

5. Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159.

6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR: a
library for large linear classification. JMLR, 9:1871–1874.

7. Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay,
V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L.,
and Woodall, T. S. (2004). Open MPI: Goals, concept, and design of a next generation MPI
implementation. In European PVM/MPI Users’ Group Meeting, pages 97–104.

8. Keerthi, S. S. and DeCoste, D. (2005). A modified finite Newton method for fast solution of
large scale linear SVMs. JMLR, 6:341–361.

9. Langford, J., Li, L., and Strehl, A. (2007). Vowpal Wabbit. https://github.com/
JohnLangford/vowpal_wabbit/wiki.

10. Lin, C.-J. and Moré, J. J. (1999). Newton’s method for large-scale bound constrained prob-
lems. SIAM J. Optim., 9:1100–1127.

11. Lin, C.-J., Weng, R. C., and Keerthi, S. S. (2008). Trust region Newton method for large-
scale logistic regression. JMLR, 9:627–650.

12. Lin, C.-Y., Tsai, C.-H., Lee, C.-P., and Lin, C.-J. (2014). Large-scale logistic regression and
linear support vector machines using Spark. In IEEE BigData.

13. Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale
optimization. Math. Program., 45(1):503–528.

14. Richtárik, P. and Takáč, M. (2012). Parallel coordinate descent methods for big data opti-
mization. Math. Program. Under revision.

15. Snir, M. and Otto, S. (1998). MPI-the complete reference: the MPI core. MIT Press, Cam-
bridge, MA, USA.

16. Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale optimiza-
tion. SIAM J. Numer. Anal., 20:626–637.

17. Yu, H.-F., Huang, F.-L., and Lin, C.-J. (2011). Dual coordinate descent methods for logistic
regression and maximum entropy models. MLJ, 85:41–75.

18. Yuan, G.-X., Chang, K.-W., Hsieh, C.-J., and Lin, C.-J. (2010). A comparison of optimization
methods and software for large-scale l1-regularized linear classification. JMLR, 11:3183–3234.

19. Zhang, C., Lee, H., and Shin, K. G. (2012). Efficient distributed linear classification algo-
rithms via the alternating direction method of multipliers. In AISTATS.

20. Zinkevich, M., Weimer, M., Smola, A., and Li, L. (2010). Parallelized stochastic gradient
descent. In NIPS.

7 An extension for L1-regularized problems is still possible (e.g., [10, 18]), though the algorithm
becomes more complicated.

https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki

	Distributed Newton Methods for Regularized Logistic Regression
	Introduction
	Existing Methods for Distributed Classification
	ADMM for Logistic Regression
	VW for Logistic Regression

	Distributed Newton Methods
	Newton Methods
	Instance-wise and Feature-wise Data Splits
	Instance-wise Split:
	Feature-wise Split:
	Analysis:

	Other Implementation Techniques
	Load Balancing:
	Data Format:
	Speeding Up Hessian-vector Product:

	Experiments
	Truncated Newton Method
	Experimental Settings
	IW versus FW
	Comparison Between State-of-the-art Methods on Function Values
	Comparison Between State-of-the-art Methods on Test Accuracy
	Speedup

	Conclusion

