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Abstract

Kernel techniques have long been used in SVM to handle linearly inseparable problems by
transforming data to a high dimensional space, but training and testing large data sets
is often time consuming. In contrast, we can efficiently train and test much larger data
sets using linear SVM without kernels. In this work, we apply fast linear-SVM methods to
the explicit form of polynomially mapped data and investigate implementation issues. The
approach enjoys fast training and testing, but may sometimes achieve accuracy close to that
of using highly nonlinear kernels. Empirical experiments show that the proposed method
is useful for certain large-scale data sets. We successfully apply the proposed method to
a natural language processing (NLP) application by improving the testing accuracy under
some training/testing speed requirements.

Keywords: decomposition methods, low-degree polynomial mapping, kernel functions,
support vector machines, dependency parsing, natural language processing

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995) have been
popular for data classification. An SVM often maps data to a high dimensional space and
then employs kernel techniques. We refer to such an approach as nonlinear SVM. Training
nonlinear SVM is usually performed through the use of popular decomposition methods.
However, these decomposition approaches require considerable time for large data sets.
In addition, the testing procedure is slow due to the kernel calculation involving support
vectors and testing instances.
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For some applications with data in a rich dimensional space (e.g., document classifica-
tion), people have shown that testing accuracy is similar with/without a nonlinear mapping.
If data are not mapped, recently some methods have been proposed to efficiently train much
larger data sets. We refer to such cases as linear SVM.

Among the recent advances in training large linear SVM, Hsieh et al. (2008) discuss
decomposition methods for training linear and nonlinear SVM. If l is the number of training
data, n̄ is the average number of non-zero features per instance, and each kernel evaluation
takes O(n̄) time, then the cost per decomposition iteration for nonlinear SVM is O(ln̄).
Taking the property of linear SVM, Hsieh et al.’s approach runs one iteration in only O(n̄).
If the number of iterations is not significantly more than that for the nonlinear case, their
method is very efficient for training linear SVM.

Motivated by the above O(ln̄) and O(n̄) difference, in this work, we investigate the
performance of applying linear-SVM methods to low-degree data mappings. By considering
the explicit form of the mapping, we directly train a linear SVM. The cost per decomposition
iteration is O(n̂), where n̂ is the new average number of non-zero elements in the mapped
vector. If n̂ < ln̄, the new strategy may be faster than the training using kernels.

Currently, polynomial kernels are less widely used than the RBF (Gaussian) kernel,
which maps data to an infinite dimensional space. This might be because under similar
training and testing cost, a polynomial kernel may not give higher accuracy. We show for
some data, the testing accuracy of using low-degree polynomial mappings is only slightly
worse than RBF, but training/testing via linear-SVM strategies is much faster. Therefore,
our approach takes advantages of linear methods, while still preserves a certain degree of
nonlinearity. Some early works (e.g., Gertz and Griffin, 2005; Jung et al., 2008; Moh and
Buhmann, 2008) have employed this idea in their experiments. Here we aim at a more
detailed study on large-scale scenarios.

An exception where polynomial kernels have been popular is NLP (natural language
processing). Some have explored the fast calculation of low-degree polynomial kernels to
save the testing time (e.g., Isozaki and Kazawa, 2002; Kudo and Matsumoto, 2003; Goldberg
and Elhadad, 2008). However, these works still suffer from the slow training because of not
applying some recently developed training techniques.

This paper is organized as follows. We introduce SVM in Section 2. In Section 3,
we discuss the proposed method for efficiently training and testing SVM for low-degree
polynomial data mappings. A particular emphasis is on the degree-2 polynomial mapping.
Section 4 presents the empirical studies. We give an NLP application on dependency parsing
in Section 5. Conclusions are in Section 6.

Notation: we list some notation related to the number of features.

n: number of features (dimensionality of data); xi ∈ Rn is the ith training instance

ni: number of non-zero feature values of xi

n̄: average number of non-zero elements in xi; see (9)

n̂: average number of non-zero elements in the mapped vector φ(xi)

ñ: number of non-zero elements in the weight vector w
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2. Linear and Nonlinear SVM

Assume training instance-label pairs are (xi, yi), i = 1, . . . , l, where xi ∈ Rn and yi ∈
{1,−1}. We consider the following SVM problem with a penalty parameter C > 0:

min
w

1

2
wTw + C

∑l

i=1
max(1− yiwTφ(xi), 0). (1)

The function φ(x) maps an instance to a higher dimensional space for handling linearly
inseparable data. We refer to such a setting as nonlinear SVM. For some applications,
φ(x) = x can already properly separate data; we call such cases linear SVM. Many SVM
studies consider wTxi+ b instead of wTxi in (1). In general this bias term b does not affect
the performance much, so here we omit it for the simplicity.

Due to the high dimensionality of φ(x) and the possible difficulty of obtaining the
explicit form of φ(x), SVM is often solved through the dual problem with the kernel trick:

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (2)

where Qij = yiyjK(xi,xj) = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T . K(xi,xj) is called the

kernel function and α is the dual variable.

The matrix Q in the dual problem (2) is dense and may be too large to be stored in the
computer memory. Currently, decomposition methods (e.g., Joachims, 1998; Keerthi et al.,
2001; Chang and Lin, 2001) are the major approach to solve (2). However, if linear SVM is
considered, we can more easily solve both the primal and the dual problems. Early studies
(e.g., Mangasarian and Musicant, 1999; Ferris and Munson, 2003) have demonstrated that
many traditional optimization methods can be applied. They focus on data with many
instances but a small number of features. Recently, an active research topic is to train
linear SVM with both large numbers of instances and features (e.g., Joachims, 2006; Shalev-
Shwartz et al., 2007; Bottou, 2007; Hsieh et al., 2008; Langford et al., 2009).

3. Using Linear SVM for Low-degree Polynomial Data Mappings

In this section, we discuss the methods and issues in training/testing low-degree data map-
pings using linear SVM. We are interested in when the training via linear-SVM techniques
is faster than nonlinear SVM. We put an emphasis on the degree-2 polynomial mapping.

3.1 Low-degree Polynomial Mappings

A polynomial kernel takes the following form

K(xi,xj) = (γxTi xj + r)d, (3)

where γ and r are parameters and d is the degree. The polynomial kernel is the product
between two vectors φ(xi) and φ(xj). For example, if d = 2 and r = 1, then

φ(x) = [1,
√

2γx1, . . . ,
√

2γxn, γx
2
1, . . . , γx

2
n,
√

2γx1x2, . . . ,
√

2γxn−1xn]T . (4)
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The coefficient
√

2 in (4) is only used to make φ(xi)
Tφ(xj) have a simple form. Without

using kernels, we can consider more flexible mapping vectors. For example, if γ = 1,
removing

√
2 in (4) results in a simple mapping vector:

φ(x) = [1, x1, . . . , xn, x
2
1, . . . , x

2
n, x1x2, . . . , xn−1xn]T . (5)

For the polynomial kernel (3), the dimensionality of φ(x) is

C(n+ d, d) =
(n+ d)(n+ d− 1) · · · (n+ 1)

d!
,

which is obtained by counting the number of terms in (3).

3.2 Training by Linear SVM Methods

The training time for SVM depends on the number of data instances and the number of
features. Due to the high dimensionality of φ(x), we must judge whether it is better to
choose an explicit mapping or an implicit way by kernels. We explore this issue by investi-
gating the difference between applying decomposition methods to solve the dual problem of
linear and nonlinear SVM. Though many optimization methods have been applied to train
SVM, we discuss decomposition methods because of the following reasons. First, they are
the major approach for nonlinear SVM. Second, efficient decomposition methods for linear
SVM have been developed (e.g., Hsieh et al., 2008).

A decomposition method iteratively updates a small subset of variables. We consider
the situation of updating one variable at a time.1 If α is the current solution and the ith
component is selected for update, then we minimize the following one-variable problem:

min
d

1

2
(α+ dei)

TQ(α+ dei)− eT (α+ dei)

=
1

2
Qiid

2 + (Qα− e)id+ constant (6)

subject to 0 ≤ αi + d ≤ C.

This minimization is easy, but to construct (6), we must calculate

(Qα− e)i =
∑l

j=1
Qijαj − 1 =

∑l

j=1
yiyjK(xi,xj)αj − 1. (7)

If each kernel element costs O(n̄), where n̄ is the average number of non-zero features, then
(7) needs O(ln̄) operations.

If using the explicit mapping vectors, we can calculate (Qα− e)i by∑l

j=1
Qijαj − 1 = yiw

Tφ(xi)− 1, where w =
∑l

j=1
yjαjφ(xj). (8)

If w is available, (8) requires O(n̂) operations, where n̂ is the average number of non-zero
elements in φ(xi), ∀i. To maintain w, Hsieh et al. (2008) use

w ← w + yi(α
new
i − αold

i )φ(xi),

1. If using standard SVM with the bias b, the dual form contains an equality and at least two variables
must be considered.
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so the cost is also O(n̂). Therefore, the above discussion indicates the tradeoff between
O(ln̄) and O(n̂) cost by implicit and explicit mappings, respectively.

Practical implementations of decomposition methods involve other issues. For example,
if using the kernel trick, we may develop better techniques for selecting the working variable
at each iteration. Then the number of iterations is smaller. More details can be found in
Hsieh et al. (2008, Section 4). Nevertheless, checking O(ln̄) and O(n̂) can roughly indicate
if using an explicit mapping leads to faster training.

3.3 Number of Non-zero Features per Instance

From the discussion in Section 3.2, it is important to know the value n̂. If the input data
are dense, then the number of non-zero elements in φ(x) is O(nd), where d is the degree of
the polynomial mapping.

If the input data are sparse, the number of non-zero elements is smaller than the dimen-
sionality. Assume ni is the number of non-zero elements of the ith training instance. Then
the average number in xi ∀i is

n̄ =
n1 + · · ·+ nl

l
. (9)

If d = 2, the average number of non-zero elements in φ(xi), ∀i is

n̂ =
1

l

∑l

i=1

(ni + 2)(ni + 1)

2
≈ 1

l

∑l

i=1

n2
i

2
=

1

2
n̄2 +

1

2l

∑l

i=1
(ni − n̄)2. (10)

The second term in (10) is the variance of n1, . . . , nl. If the variance is small, comparing ln̄
and n̄2/2 can possibly indicate if one should train a linear or a nonlinear SVM. In Section
4, we give more analysis on real data.

3.4 Implementation Issues

Due to the high dimensionality of φ(xi), some implementation issues must be addressed.
To begin, we discuss various ways to handle the new data φ(x1), . . . , φ(xl). A vector φ(x)
now contains terms like xrxs, which can be calculated using x. We consider three methods:

1. Calculate and store φ(x1), . . . , φ(xl) as the new input data.

2. Use x1, . . . , xl as the input data and calculate all φ(x1), . . . , φ(xl) before training.

3. Use x1, . . . , xl as the input data and calculate φ(xi) in a training algorithm (e.g.,
decomposition method).

These methods have advantages/disadvantages. The first method does not require any
modification of linear-SVM solvers, but needs a large O(ln̂) disk/memory space to store
φ(xi), ∀i. The second method also needs extra memory spaces, but avoids the long time
for loading data from disk. The third method does not need extra memory, but requires
some modifications of the decomposition implementation. That is, we need to calculate
φ(xi) in (8). These three methods are useful under different circumstances. In Section 4.3,
we experimentally show that for data with not too large n, the third way is the fastest.
Although φ(xi) ∀i can be stored in memory, accessing data from memory to cache and then
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CPU may be slower than performing the calculation. However, for an application with very
large n and very small n̄, we demonstrate that the first or the second method may be more
suitable. See the discussion later in this section.

While we may avoid storing φ(xi), one memory bottleneck remains. The vector w
has a huge number of O(nd) components. If some features of φ(xi), ∀i are zero, their
corresponding elements in w are useless. Hence we can implement a sparse w to save the
storage. In the following we analyze the possibility of having a sparse w by considering
d = 2 and assuming that features of an instance have an equal opportunity to be zeros.
The probability that (xi)r(xi)s is zero for all φ(xi), i = 1, . . . , l is

∏l

i=1

(
1− ni(ni − 1)

n(n− 1)

)
.

Note that ni(ni − 1)/n(n − 1) is the probability that (xi)r(xi)s is non-zero. Then the
expected number of non-zero elements in w can be approximated by

C(n+ 2, 2)− n(n− 1)

2

∏l

i=1

(
1− ni(ni − 1)

n(n− 1)

)
, (11)

where n(n − 1)/2 is the number of xrxs terms in (4). This number is usually close to
C(n+ 2, 2) due to the product of l values in (11). Moreover, this estimate is only accurate
if features are independent. The assumption may hold for data sets with features from
bitmaps or word frequencies, but is wrong for data with exclusive features (e.g., binary
representation of a nominal feature). For data with known structures of features, in Section
4.2 we use real examples to illustrate how to more accurately estimate the number of w’s
non-zero elements.

In Section 5, we present an example of using a sparse w. The dimensionality of the input
data is n = 46, 155. If d = 2, then storing w as a dense vector takes almost 20 GBytes
of memory (assuming double precision). This problem has a very small ni ≈ 13.3, ∀i.
Many xrxs terms are zero in all φ(xi), i = 1, . . . , l, so w is very sparse. However, a naive
implementation can be very inefficient. Assume ñ is the number of non-zero elements in w,
where for this example ñ = 1, 438, 456. Accessing an element in a sparse vector requires an
expensive O(ñ) linear search. We can use a hash table to store w, but experiments show
that the access time of w is still high. If φ(xi), ∀i can be stored in memory, we construct a
hash mapping from (r, s) to j ∈ {1, . . . , ñ} and re-generate training data using feature index
j. That is, we construct a condensed representation for φ(xi), ∀i and train a linear SVM
with a dense w ∈ Rñ. The training is much more efficient because we can easily access
any element of w. In prediction, for any testing instance x, we use the same hash table to
conduct the inner product wTφ(x). This strategy corresponds to the first/second methods
in the above discussion of handling φ(xi) ∀i.

The above technique to condense φ(xi) has been used in recent works on hash kernels
(e.g., Shi et al., 2009). They differ from us in several aspects. First, their condensed
representation is an approximation to φ(xi). Second, with an online setting, they may not
accurately solve the problem (1).
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3.5 Relations with the RBF kernel

RBF kernel (Gaussian kernel) may be the most used kernel in training nonlinear SVM. It
takes the following form:

K(xi,xj) = e
−‖xi−xj‖

2

2σ2 .

Keerthi and Lin (2003) show that, as σ2 →∞, SVM with the RBF kernel and the penalty
parameter C approaches linear SVM with the penalty parameter C/(2σ2). This result
implies that with a suitable parameter selection, the testing accuracy of using the RBF
kernel is at least as good as using the linear kernel.

For polynomial kernels, Lippert and Rifkin (2006) discuss the relation with RBF. They
consider the penalty parameter (1/(2σ2))−2dC and check the situation as σ2 → ∞. For a
positive integer d, the limit of SVM with the RBF kernel approaches SVM with a degree-d
polynomial mapping of data. The polynomial mapping is related only to the degree d. This
result seems to indicate that RBF is again at least as good as polynomial kernels. However,
the polynomial mapping for (3) is more general due to two additional parameters γ and r.
Thus the situation is unclear if parameter selections have been applied to both kernels. In
Section 4, we give a detailed comparison between degree-2 polynomial mappings and RBF.

3.6 Parameter Selection

The polynomial kernel defined in (3) has three parameters (d, γ, and r). Now we intend to
use low-degree mappings so d should be 2 or 3. Selecting the two remaining parameters is
still complicated. Fortunately, we show in Appendix A that r can be fixed to one, so the
number of parameters is the same as that of the RBF kernel. This result is obtained by
proving that a polynomial kernel

K̄(xi,xj) = (γ̄xTi xj + r)d with parameters (C̄, γ̄, r) (12)

results in the same model as the polynomial kernel

K(xi,xj) = (γxTi xj + 1)d with parameters γ =
γ̄

r
and C = rdC̄. (13)

3.7 Prediction

Assume a degree-d polynomial mapping is considered and #SV is the number of support
vectors. For any testing data x, the prediction time with/without kernels is∑

i:αi>0
αiyiK(xi,x) ⇒ O(#SV · n̄), (14)

wTφ(x) ⇒ O(n̂), (15)

where n̄ and n̂ are respectively the average number of non-zero elements in x and φ(x). If
n̂ ≤ #SV · n̄, then (15) is more efficient than (14). Several NLP studies (e.g., Isozaki and
Kazawa, 2002) have used (15) for efficient testing.
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Data set n n̄ l # testing

a9a 123 13.9 32,561 16,281
real-sim 20,958 51.5 57,848 14,461
news20 1,355,181 455.5 15,997 3,999
ijcnn1 22 13.0 49,990 91,701
MNIST38 752 168.2 11,982 1,984
covtype 54 11.9 464,810 116,202
webspam 254 85.1 280,000 70,000

Table 1: Summary of the data sets. n is the number of features, and n̄ is the average number
of non-zero features for each data instance. l is the number of data instances. The
last column shows the number of testing data.

4. Experiments

In this section, we experimentally analyze the proposed approach for degree-2 polynomial
mappings. We use two-class data sets, but in Section 5, we consider multi-class problems
from an NLP application. We briefly discuss extensions to L1-regularized SVM in Section
4.5.

Except programs used in Section 5, all sources for experiments are available at http:

//www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

4.1 Data Sets and Implementations

We select the following problems from LIBSVM tools2 for experiments: a9a, real-sim, news20,
ijcnn1, MNIST, covtype and webspam. The summary of data sets is in Table 1. Problems
real-sim, news20, covtype and webspam have no original test sets, so we use a 80/20 split
for training and testing. MNIST is a 10-class problem; we consider classes 3 and 8 to form
a two-class data set MNIST38. While covtype is originally multi-class, we use a two-class
version at LIBSVM tools.

We do not further scale these data sets as some of them have been pre-processed. Prob-
lems real-sim, news20 and webspam are document sets and each instance is normalized to
unit length. We use a scaled version of covtype at LIBSVM tools, where each feature is lin-
early scaled to [0, 1]. The original MNIST data have all feature values in the range [0, 255],
but the version we download is scaled to [0, 1] by dividing every value by 255.

We compare implicit mappings (kernel) and explicit mappings of data by LIBSVM
(Chang and Lin, 2001) and an extension of LIBLINEAR (Fan et al., 2008), respectively.
The two packages use similar stopping conditions, and we set the same stopping tolerance
0.1. Experiments are conducted on a 2.5G Xeon L5420 machine with 16G RAM using gcc
compiler. Our experiments are run on a single CPU.

2. LIBSVM tools can be found at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Data set
Analysis of φ(xi) # non-zeros in w

n̄2/2 n̂ ln̄ C(n+2, 2)
Estimated by

Real
(11) (16)

a9a 96.2 118.1 4.52e+05 7.75e+03 7.75e+03 6.60e+03 5.56e+03
real-sim 1,325.1 2,923.6 2.98e+06 2.20e+08 1.15e+08 3.01e+07
news20 103,750.6 327,051.6 7.29e+06 9.18e+11 5.20e+09 3.13e+09
ijcnn1 84.5 105.0 6.50e+05 2.76e+02 2.76e+02 2.31e+02 2.31e+02
MNIST38 14,147.2 14,965.1 2.02e+06 2.84e+05 2.84e+05 1.54e+05
covtype 71.3 90.3 5.55e+06 1.54e+03 1.54e+03 7.54e+02 6.69e+02
webspam 3,623.5 3,836.4 2.38e+07 3.26e+04 3.26e+04 9.44e+03

Table 2: Analysis of φ(xi), i = 1, . . . , l and number of non-zero elements in w.

4.2 Analysis of φ(x) and w

Following the discussion in Section 3.2, we check ln̄ and n̂ to see if using the explicit mapping
of data may be helpful. Table 2 presents these two values for the degree-2 polynomial
mapping. We also present n̄2/2 as from (10) it can be a rough estimate of n̂.

From Table 2, except document data real-sim and news20, n̄2/2 is close to n̂. The huge
difference between n̂ and ln̄ indicates that using explicit mappings is potentially faster.

Next we investigate the number of non-zero elements in w. Table 2 presents the di-
mensionality of w, two estimated numbers of non-zero elements and the actual number.
For most data, the first estimation by (11) pessimistically predicts that w is fully dense.
Two exceptions are real-sim and news20, where (11) is quite accurate. These two sparse
document sets seem to have independent features (word occurrence) so that the assumption
for (11) holds. For data with known structures, we demonstrate that a better estimate than
(11) can be achieved. The problem a9a contains 14 groups of features3 and each group
contains several exclusive binary features (e.g., age in various ranges). Within each group,
xrxs = 0 if r 6= s, so an upper bound of w’s number of non-zero elements is

C(n+ 2, 2)−
∑

feature groups

C(#features in each group, 2). (16)

We show in Table 2 that (16) is closer to the actual number. The situation for two other
problems (ijcnn1 and covtype) is similar.

As storing news20’s non-zero w elements requires more memory than our machine’s
capacity, we do not include this set in subsequent experiments.

4.3 Calculating or Storing φ(xi)

In Section 3.4, we discuss three methods to handle φ(xi). Table 3 compares the first/second
and the third methods. We select C and kernel parameters by a validation procedure and
present the training time of using optimal parameters. For the first/second methods, we
count CPU time after all φ(xi) have been loaded/generated. For the third, we show CPU

3. See descriptions in the beginning of each file from http://research.microsoft.com/en-us/um/people/

jplatt/adult.zip.
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Data set n̂/n̄
Storing φ(xi) Calculating φ(xi)

L2 cache misses Training time (s) L2 cache misses Training time (s)

a9a 8.51 5.62e+07 2.2 2.51e+06 1.6
real-sim 56.79 2.60e+09 63.3 1.84e+09 59.8
ijcnn1 8.08 3.62e+08 14.0 2.32e+07 10.7
MNIST38 88.97 9.08e+08 20.4 7.90e+06 8.6
covtype 7.56 1.55e+11 6,422.4 2.98e+10 5,211.9
webspam4 45.07 1.30e+11 4,219.3 3.20e+09 3,228.1

Table 3: A comparison between storing and calculating φ(xi). The column n̂/n̄ indicates
the ratio between the memory consumption for storing φ(xi) and xi. Time is in
seconds.

time after loading all xi, as this method calculates φ(xi), ∀i in the middle of the training
procedure.

Table 3 lists n̂/n̄ to show the ratio between two methods’ memory consumption on
storing φ(xi) and xi, ∀i. In the same table we present each method’s number of L2 cache
misses and training time. The number of L2 cache misses is obtained by the simulation tool
cachegrind in valgrind.5 The method by calculating φ(xi) is faster in all cases. Moreover,
it has a smaller number of L2 cache misses. Data can be more easily located in the cache
when φ(xi) is not stored. We consider the method of calculating φ(xi) for subsequent
experiments in this section.

4.4 Accuracy and Time of Using Linear, Degree-2 Polynomial, and RBF

We compare training time, testing time, and testing accuracy of using three mappings:
linear, degree-2 polynomial, and RBF. We use LIBLINEAR for linear, LIBSVM for RBF,
and both for degree-2 polynomial. For each data set, we choose parameters C, γ (for
polynomial), or σ2 (for RBF) by a five-fold cross validation on a grid of points. The best
parameters are then used to train the whole training set and obtain the testing accuracy.
To reduce the training time, LIBSVM allocates some memory space, called kernel cache, to
store recently used kernel elements. In contrast, LIBLINEAR does not require this space.
All it needs is to store w. In this work, we run LIBSVM using 1 GBytes of kernel cache.

Using linear and RBF mappings, Table 4 presents the training time, testing accuracy,
and the correspondent parameters. Linear and RBF have similar testing accuracy on data
sets a9a and real-sim. The set real-sim contains document data with many features. Linear
classifiers have been observed to perform well on such data with much less training time.
For other data sets, the testing accuracy of using linear is clearly inferior to that of using
RBF. Degree-2 polynomial mappings may be useful for these data. We can possibly improve
the accuracy over linear while achieving faster training time than RBF.

4. For webspam, as φ(xi) ∀i require more memory than what our machine has, we use single precision
floating-point numbers to store the data. All other experiments in this work use double precision.

5. cachegrind can be found at http://valgrind.org/.
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Linear (LIBLINEAR) RBF (LIBSVM)
Data set C Time (s) Accuracy C σ Time (s) Accuracy

a9a 32 5.4 84.98 8 0.03125 98.9 85.03
real-sim 1 0.3 97.51 8 0.5 973.7 97.90
ijcnn1 32 1.6 92.21 32 2 26.9 98.69
MNIST38 0.03125 0.1 96.82 2 0.03125 37.6 99.70
covtype 0.0625 1.4 76.35 32 32 54,968.1 96.08
webspam 32 25.5 93.15 8 32 15,571.1 99.20

Table 4: Comparison of linear SVM and nonlinear SVM with RBF kernel. Time is in
seconds.

Data set
Degree-2 Polynomial Accuracy diff.

C γ
Training time (s)

Accuracy Linear RBF
LIBLINEAR LIBSVM

a9a 8 0.03125 1.6 89.8 85.06 0.07 0.02
real-sim 0.03125 8 59.8 1,220.5 98.00 0.49 0.10
ijcnn1 0.125 32 10.7 64.2 97.84 5.63 −0.85
MNIST38 2 0.3125 8.6 18.4 99.29 2.47 −0.40
covtype 2 8 5,211.9 NA 80.09 3.74 −15.98
webspam 8 8 3,228.1 NA 98.44 5.29 −0.76

Table 5: Training time (in seconds) and testing accuracy of using the degree-2 polynomial
mapping. The last two columns show the accuracy difference to results using linear
and RBF. NA indicates that programs do not terminate after 300,000 seconds.

We then explore the performance of the degree-2 polynomial mapping. The first part of
Table 5 shows the training time, testing accuracy, and optimal parameters using LIBLINEAR.
As a comparison, we run LIBSVM with the same parameters and report training time.6 Table
5 also presents the testing accuracy difference between degree-2 polynomial and linear/RBF.
It is observed that for nearly all problems, the performance of the degree-2 polynomial
mapping can compete with RBF, while for covtype, the performance is only similar to the
linear mapping. Apparently, a degree-2 mapping does not give rich enough information to
separate data in covtype.

Regarding the training time, LIBLINEAR with degree-2 polynomial mappings is faster
than LIBSVM with RBF. Therefore, the proposed method may achieve fast training, while
preserving some benefits of nonlinear mappings. Next, we compare the training time be-
tween LIBLINEAR and LIBSVM when the same degree-2 polynomial mapping is used. From
Table 5, LIBLINEAR is much faster than LIBSVM. Thus for applications needing to use
low-degree polynomial kernels, the training time can be significantly reduced.

6. LIBSVM solves SVM with bias b, but LIBLINEAR solves (1). As the difference is minor, we run LIBSVM
with the same parameters for LIBLINEAR. Moreover, the testing accuracy of LIBSVM is almost the same
as LIBLINEAR.
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Data set
LIBLINEAR LIBSVM

linear degree-2 degree-2 RBF

a9a 0.00 0.01 19.28 32.42
real-sim 0.02 1.13 107.67 84.52
ijcnn1 0.02 0.07 14.07 20.38
MNIST38 0.00 0.12 2.41 5.76
covtype 0.03 0.09 NA 998.68
webspam 0.05 1.14 NA 846.77

Table 6: Testing time (in seconds) using decomposition methods for linear and nonlinear
SVM. Parameters in Tables 4 and 5 are used to build SVM models for prediction.
NA: SVM models are not available due to lengthy training time (see Table 5).

We present testing time in Table 6. The explicit mapping approach is much faster as it
calculates only wTx or wTφ(x).

4.5 L1-regularized SVM with Linear and Degree-2 Polynomial Mappings

Recently, L1-regularized SVM has gained attention because it can produce a sparse model
(see, for example, the survey by Yuan et al., 2009, and references therein). An L1-regularized
SVM7 solves

min
w

‖w‖1 + C
∑l

i=1
max(1− yiwTφ(xi), 0)2, (17)

where ‖ · ‖1 denotes the 1-norm. As discussed in Section 3.4, after a degree-2 polynomial
mapping the number of features may be very large. A sparse w reduces the memory
consumption. In this section, we conduct a preliminary investigation on training degree-2
polynomial mappings via (17).

Due to the non-differentiable term ‖w‖1, optimization techniques for (17) are different
from those for L2-regularized SVM. If we pre-compute φ(xi), ∀i (i.e., methods 1 and 2 in
Section 3.4 for handling φ(xi)), then any optimization technique for (17) can be directly
applied. Recall that Section 4.3 shows that method 3 (calculating φ(xi) in the training
algorithm) is faster if n is not large. We show an interesting example where this method
significantly increases the number of operations. In Yuan et al. (2009), a primal decompo-
sition (coordinate descent) method is considered the fastest for solving (17). It updates one
element of w at a time. If w is the current solution and the jth element is selected, the
following one-variable problem is minimized:

min
d

|wj + d|+ C
∑l

i=1
max

(
1− yiwTφ(xi)− yidφ(xi)j , 0

)2
.

Assume φ(x)j involves xrxs. To obtain all φ(xi)j , ∀i, we must go through non-zero
elements of the rth and the sth features of the original data. This operation costs O(l̄),

7. We consider L2-loss in (17) by following Yuan et al. (2009).
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Linear Degree-2 polynomial

Data set
Time Sparsity Accuracy Time (s): φ(xi) is Sparsity Accuracy L2 SVM

(s) (%) (%) stored calculated (%) (%) Sparsity

a9a 0.73 83.74 85.00 3.94 19.33 10.43 85.10 71.74
real-sim 1.06 25.16 97.04 524.54 2,288.27 0.01 97.43 26.17
ijcnn1 0.86 100.00 91.79 9.17 18.09 83.70 97.59 83.70
MNIST38 0.86 55.85 96.93 38.11 81.10 0.23 99.50 54.23
covtype 60.07 98.15 75.66 70.13 2,196.08 39.22 79.73 43.44
webspam 47.08 38.98 92.55 772.92 1,296.40 12.60 98.32 28.96

Table 7: L1-regularized SVM: a comparison between linear and degree-2 polynomial map-
pings. Time is in seconds. Sparsity is the percentage of non-zero elements in w.
For the degree-2 polynomial mapping, we show the training time of both calculat-
ing and storing φ(x).

where l̄ is the average number of non-zero elements per feature of xi, ∀i. However, the
expected number of non-zero elements of φ(xi)j , ∀i is only(

l̄/l
)2 · l = l

2
/l.

If data are sparse, l
2
/l is much smaller than l̄. Therefore, the cost by using methods 1

and 2 to pre-compute φ(xi), ∀i is less than method 3. This is mainly because the primal
coordinate descent approach accesses data in a feature-based way. The sparse patterns of
two features are needed. In contrast, decomposition methods used earlier for solving the
dual problem of L2-regularized SVM is instance-based. To obtain xrxs, one needs only the
sparse pattern of an instance x. Some optimization approaches discussed in Yuan et al.
(2009) for (17) are instance-based. An interesting future study would be to investigate their
performances.

We extend a primal decomposition implementation for (17) in LIBLINEAR to han-
dle degree-2 polynomial mappings. We use default settings (e.g., stopping tolerance) in
LIBLINEAR. Table 7 compares linear and degree-2 polynomial mappings by showing train-
ing time, w’s sparsity, and testing accuracy. For the training time of using degree-2 poly-
nomials, we present results by storing and calculating φ(xi). Clearly, calculating φ(xi) is
much slower, a result consistent with our analysis. The training time for real-sim is much
longer than that in Table 5 (L2-regularized SVM). This result is due to the huge number of
variables in solving the primal problem (17). There are some tricks to improve the train-
ing speed for this problem though we do not get into details. For sparsity, we also show
the result using L2-regularized SVM as a comparison.8 L1-regularized SVM gives excellent
sparsity for some problems. For example, MNIST38 has n = 752 features. By solving (17)
with linear mapping, 420 features remain. If using a degree-2 polynomial mapping, the
dimensionality is C(n + 2, 2) = 283, 881. Solving an L2-regularized SVM gives a w with
153,564 non-zero elements, but using L1 regularization w has only a very small number of

8. The sparsity of L2-regularized SVM is in fact the column of “real” numbers of non-zero elements in
Table 2 divided by the dimensionality C(n+ 2, 2).
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nsubj ROOT det dobj prep det pobj p

John hit the ball with a bat .

NNP VBD DT NN IN DT NN .

Figure 1: A dependency graph with arc labels and part-of-speech tags for a sentence.

650 non-zero elements. Finally, for testing accuracy, results are similar to (or slightly lower
than) those in Tables 4-5.

Due to the nice sparsity results, L1 regularization for low-degree polynomial mappings
may be a promising future direction.

5. An NLP Application: Data-driven Dependency Parsing

In this section we study a real-world natural language processing (NLP) task on dependency
parsing. Given a sentence, a dependency graph represents each word and its syntactic mod-
ifiers through labeled directed edges. Figure 1 shows an example. Data-driven dependency
parsing is a common method to construct dependency graphs. Different from grammar-
based parsing, it learns to produce the dependency graph solely by using the training data.
Data-driven dependency parsing has become popular because it is chosen as the shared
task at CONLL-X9 and CONLL2007.10 More information about dependency parsing can be
found in, for example, McDonald and Nivre (2007).

Dependency parsing appears in many online NLP applications. In such cases testing
(parsing) speed is very important. We will see that this requirement for testing speed makes
our approach very useful for this application.

5.1 A Multi-class Problem

We study a transition-based parsing method proposed by Nivre (2003). The parsing al-
gorithm builds a labeled dependency graph in one left-to-right pass over the input with a
stack to store partially processed tokens. At each step, we need to decide which transition
to perform. As in Nivre et al. (2007), we use the following transitions:

• SHIFT: Pushes the next input token to the top of the stack and advances to the next
input token.

• REDUCE: Pops the top element from the stack.

• LEFT-ARC(r): Adds an arc with label r from the next input token to the token on
top of the stack and pops the top element off the stack.

9. CONLL-X can be found at http://nextens.uvt.nl/~conll/.
10. CONLL2007 can be found at http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite.

1484

http://nextens.uvt.nl/~conll/
http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite


Training and Testing Low-degree Polynomial Data Mappings via Linear SVM

input(1).tag stack.tag stack.leftmost-child.label
input(2).tag stack(1).tag stack.rightmost-child.label
input(3).tag stack.label input.leftmost-child.label
input.word stack.word
input(1).word stack.head.word

Table 8: Feature types used by the dependency parser.

• RIGHT-ARC(r): Adds an arc with label r from the top token on the stack to the next
input token. Then pushes the current input token to the stack and advances to the
next input token.

The parser decides the next transition by extracting features from the current parse state.
The parse state consists of the stack, the remaining input tokens, and the partially built
dependency graph. We use the standard method for converting symbolic features into
numerical features by binarization. For each feature type F (see Table 8), that has value
v in the current state, we generate a feature predicate, F = v. These feature predicates
are used as binary features in the classifier. It is this expansion of feature types to binary
feature predicates that leads to the large number of features in the classifiers. Especially
the lexicalized (i.e., word-based) features generate large numbers of sparse features.

Thus the core of the parser is a multi-class classification problem, which maps features
to transitions. Nivre et al. (2006) use LIBSVM with a degree-2 polynomial kernel to train
the multi-class classification problems, and get good results at CONLL-X.

In this experiment, we use data from the English Penn Treebank (Marcus et al., 1993).
The treebank is converted to dependency format using Penn2Malt,11 and the data is split
into sections 02–21 for training and section 23 for testing. During training we construct a
canonical transition sequence from the dependency graph of each sentence in the training
corpus, adopting an arc-eager approach for disambiguation. For each transition, we extract
the features in Table 8 from the current parse state, and use this for training the classifiers.

When parsing a sentence, the classifiers are used for predicting the next transition, based
on the features extracted from the current parse state. When all the input tokens have been
processed the dependency graph is extracted from the transition sequence.

In order to reduce training time the data is split into multiple sets. For example, if a
feature j takes two values a and b, we can divide the training data into {x | xj = a} and
{x | xj = b}, and get two models Ma and M b. Then in the prediction phase, we decide
to use Ma or M b according to xj of the testing instance. Yamada and Matsumoto (2003)
mention that applying this method reduces the training time without a significant loss in
accuracy. We divide the training data into 125 smaller training sets according to the part-
of-speech tag of the current input token. Also, the label for RIGHT-ARC and LEFT-ARC
transitions is predicted separately from the transition. The number of classes ranges from
2 to 12. Table 9 lists the statistics of the largest multi-class problem among 125.

11. See http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
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n n̄ l #nz

46,155 13.3 294,582 3,913,845

Table 9: Summary of the dependency parsing data set. We show statistics of the largest
problem among the 125 sets divided from the training data. The column #nz
(= ln̄) indicates the total number of non-zero feature values in the training set.

5.2 Implementations

We consider the degree-2 polynomial mapping in (5). Since the original xi, ∀i have 0/1
feature values, we use (5) instead of (4) to preserve this property.12 In our implementation,
by extending LIBLINEAR, 0/1 values are still stored as double-precision numbers. However,
for large data sets, we can save memory by storing only non-zero indices. Due to using (5),
the only parameter is C.

The dimensionality of using the degree-2 polynomial mapping is huge. We discussed in
Section 3.4 that 20 GBytes memory is needed to store a dense w. Assume the “one-against-
the rest” approach is applied for multi-class classification. We need 125 × (# classes) vectors
ofw in the prediction (parsing) stage as training data are separated into 125 sets. Obviously
we do not have enough memory for them. As the data are very sparse, the actual number
of non-zero elements in w is merely 1,438,456 (considering the largest of the 125 training
sets). Only these non-zero features in φ(x) and w are needed in training/testing, so the
memory issue is solved. In the practical implementation, we construct a hash table to collect
non-zero features of φ(xi), i = 1, . . . , l as a new set for training.13 In prediction, we use the
same hash map to calculate wTφ(x). This implementation corresponds to the first/second
methods discussed in Section 3.4. See more details in the end of Section 3.4.

Other settings (e.g., stopping tolerance and LIBSVM’s kernel cache) are the same as those
in Section 4. LIBSVM uses the “one-against-one” approach for training multi-class problems,
while LIBLINEAR uses “one-against-the rest.” We use a dependency parsing system at
Google, which calls LIBSVM/LIBLINEAR for training/testing. Parts of this experiment
were performed when some authors worked at Google.

As the whole parsing system is quite complex, we have not conducted a complete pa-
rameter optimization. Instead, we have roughly tuned each parameter to produce good
results.

5.3 Experiments

We compare two approaches. The first uses kernels, while the second does not.

• LIBSVM: RBF and degree-2 polynomial kernels.

• LIBLINEAR: linear mapping (i.e., the original input data) and the degree-2 polynomial
mapping via (5).

12. In fact, if using (4), we can still use some ways so that
√

2 is not stored. However, the implementation
is more complicated.

13. For a fair comparison, the reported training time includes time for this pre-processing stage.
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LIBSVM LIBLINEAR
RBF Poly (d = 2) Linear Poly: Eq. (5)

Parameters
C = 0.5 C = 0.5 C = 0.5 C = 0.05

1/(2σ2) = 0.18 γ = 0.18
r = 0.3

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

Table 10: Accuracy, training time, and parsing speed (relative to LIBSVM with polynomial
kernel) for the dependency parsing.

Table 10 lists parameters for various kernels, training/testing time, and testing accu-
racy. Training and testing are done using gold standard part-of-speech tags, and only non-
punctuation tokens are used for scoring. The accuracy of dependency parsing is measured
by two evaluation metrics:

1. Labeled attachment score (LAS): the percentage of tokens with correct dependency
head and dependency label.

2. Unlabeled attachment score (UAS): the percentage of tokens with correct dependency
head.

For LIBSVM the polynomial kernel gives better accuracy than the RBF kernel, consistent
with previous observations, that polynomial mappings are important for parsing (Kudo and
Matsumoto, 2000; McDonald and Pereira, 2006; Yamada and Matsumoto, 2003; Goldberg
and Elhadad, 2008). Moreover, LIBSVM using degree-2 polynomial kernel produces better
results in terms of UAS/LAS than LIBLINEAR using just a linear mapping of features.
However, parsing using LIBSVM is slow compared to LIBLINEAR. We can speed up parsing
by a factor of 1,652 with only a 2.5% drop in accuracy. With a degree-2 polynomial mapping
(5), we achieve UAS/LAS results similar to LIBSVM, while still maintaining high parsing
speed, 103 times faster than LIBSVM.

From Table 10, training LIBLINEAR is a lot faster than LIBSVM. This large reduction in
training time allows us to easily conduct experiments and improve the settings. Some may
criticize that the comparison on training time is not fair as LIBSVM uses “one-against-one”
for multi-class classification, while LIBLINEAR uses “one-against-the rest.” It is known (e.g.,
Hsu and Lin, 2002) that for nonlinear SVM, LIBSVM with “one-against-one” is faster than
“one-against-the rest.” Thus even if we modify LIBSVM to perform “one-against-the rest,”
its training is still much slower than LIBLINEAR.

5.4 Related Work

Earlier works have improved the testing speed of SVM with low-degree polynomial kernels.
Most of them target natural language processing (NLP) applications. Isozaki and Kazawa
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(2002) propose an approach similar to obtaining w by the expression in (8).14 A direct
implementation of their method requires a memory space as large as the dimensionality of
w, but we cannot afford such a space for our application. Kudo and Matsumoto (2003)
consider the expression ofw in (8) and propose an approximate prediction scheme using only
a sub-vector of w. Their method is useful for data with 0/1 features. Goldberg and Elhadad
(2008) propose speeding up the calculation of low-degree polynomial kernels by separating
features to rare and common ones. Goldberg and Elhadad’s approach is motivated by some
observations of NLP data. It avoids the memory problem, but the effectiveness on general
data is not clear yet.

The above existing works focus on improving testing speed. They suffer from the slow
training of using traditional SVM solvers. For example, Kudo and Matsumoto (2000) men-
tion that “the experiments . . . have actually taken long training time,” so they must select
a subset using properties of dependency parsing. Our approach considers linear SVM on
explicitly mapped data, applies state of the art training techniques, and can simultaneously
achieve fast training and testing.

6. Discussions and Conclusions

Past research has shown that SVM using linear and highly nonlinear mappings of data has
the following properties:

Linear Highly nonlinear

Fast training/testing Slow training/testing via kernels
Low accuracy High accuracy

Many have attempted to develop techniques in the between. Most start from the nonlinear
side. They propose methods to manipulate the kernels (e.g., Lee and Mangasarian, 2001;
Keerthi et al., 2006). In contrast, ours is from the linear side. The strategy is simple and
requires only minor modifications of existing packages for linear SVM.

This work focuses on the degree-2 polynomial mapping. An interesting future study is
the efficient implementation for degree-3 mappings. Considering other mapping functions
to expand data vectors could be investigated as well. As kernels are not used, we might
have a greater flexibility to design the mapping function.

Table 2 shows that storingw may require a huge amount of memory. For online training,
some (e.g., Langford et al., 2009) have designed feature hashing techniques to control the
memory use of w. Recently, feature hashing has been popular for projecting a high dimen-
sional feature vector to a lower dimensional one (e.g., Weinberger et al., 2009; Shi et al.,
2009). For certain sequence data, one can consider n-gram (i.e., n consecutive features)
instead of general polynomial mappings. Then not only the number of features becomes
smaller, but also controlling w’s sparsity is easier. Existing experiments on document data
can be found in, for example, Ifrim et al. (2008) and Shi et al. (2009).

14. They do not really form w, but their result by expanding the degree-2 polynomial kernel leads to
something very similar.
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We successfully apply the proposed procedure to an NLP application. It has certain
requirements on the training and testing speed, but we also hope to achieve better testing
accuracy. The proposed procedure is very useful for applications of this type.
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Appendix A. Connection Between (12) and (13)

We prove the result by showing that the dual optimization problems of using (12) and (13)
are the same. Since

(γ̄xTi xj + r)d = rd
( γ̄
r
xTi xj + 1

)d
,

we have

Q̄ij = yiyjK̄(xi,xj) = rdQij .

The dual optimization problem of using Q̄ can be written as

min
ᾱ

1

rd

(
1

2
(rdᾱ)TQ(rdᾱ)− eT rdᾱ

)
subject to 0 ≤ rdᾱi ≤ rdC̄, i = 1 . . . , l.

Using α = rdᾱ and C = rdC̄, this problem becomes the dual problem when using Q.
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