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Abstract

Crammer and Singer’s method is one of the most popular multi-class SVMs. It
considers L1 loss (hinge loss) in a complicated optimization problem. In SVM,
squared hinge loss (L2 loss) is a common alternative to L1 loss, but surprisingly
we have not seen any paper studying details of Crammer and Singer’s method
using L2 loss. In this note, we conduct a thorough investigation. We show that
the derivation is not trivial and has some subtle differences from the L1 case.
Details provided in this work can be a useful reference for those who intend to use
Crammer and Singer’s method with L2 loss. They do not need a tedious process to
derive everything by themselves. Further, we present some new results/discussion
for both L1- and L2-loss formulations.

1 Introduction

Support Vector Machines (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995)
were originally designed for binary classification. In recent years, many approaches
have been proposed to extend SVM to handle multi-class classification problems;
see, for example, a detailed comparison in Hsu and Lin (2002). Among these works,
the method proposed by Crammer and Singer (2001, 2002) has been widely used.
They extend the optimization problem of L1-loss (hinge-loss) SVM to a multi-class
formula. In binary classification, squared hinge loss (L2 loss) is a common alter-
native to L1 loss, but surprisingly we have not found any paper studying details
of Crammer and Singer’s method with L2 loss. This is inconvenient because, for
example, we do not know what the dual problem is.1 Although the dual problem
of two-class SVM using L2 loss is well known, it cannot be directly extended to
the multi-class case. In fact, the derivation is non-trivial and has some subtle dif-
ferences from the L1 case. Also, the algorithm to solve the dual problem (for both
kernel and linear situations) must be modified. We think there is a need to give
all the details for future references. Then those who intend to use Crammer and

1Indeed, the dual problem has been provided in some works of structured SVM,
where Crammer and Singer’s multi-class SVM is a special case. However, their
form can be simplified for multi-class SVM; see a detailed discussion in Section
2.2.



Singer’s method with L2 loss do not need a tedious procedure to derive everything
by themselves.

In addition to the main contribution to investigate L2-loss multi-class SVM,
we present some new results for both L1- and L2-loss cases. First, we discuss the
differences between the dual problem of Crammer and Singer’s multi-class SVM
and that of structured SVM, although we focus more on the comparison of L2-loss
formulation. Second, we give a simpler derivation for solving the sub-problem in
the decomposition method to minimize the dual problem.

This paper is organized as follows. In Section 2, we introduce L2-loss multi-
class SVM and derive its dual problem. We discuss the connection to structured
SVM, which is a generalization of Crammer and Singer’s multi-class SVM. Then in
Section 3, we extend a decomposition method to solve the optimization problem.
In particular, we obtain the sub-problem to be solved at each iteration. A proce-
dure to find the solution of the sub-problem is given in Section 4. Our derivation
and proof are simpler than Crammer and Singer’s. In Section 5, we discuss some
implementation issues and extensions. Experiments in Section 6 compare the per-
formance of L1-loss and L2-loss multi-class SVM using both linear and nonlinear
kernels. Section 7 then concludes this paper.

2 Formulation

Given a set of instance-label pairs (xi, yi), xi ∈ Rn, yi ∈ {1, . . . , k}, i = 1, . . . , l,
Crammer and Singer (2002) proposed a multi-class SVM approach by solving the
following optimization problem.

min
w1,...,wk,ξ

1

2

k∑
m=1

wT
mwm + C

l∑
i=1

ξi

subject to wT
yi
xi −wT

mxi ≥ emi − ξi, (1)

i = 1, . . . , l, m = 1, . . . , k,

where

emi =

{
0 if yi = m,

1 if yi 6= m.
(2)

Note that if yi = m, the constraint is the same as ξi ≥ 0.
The decision function for predicting the label of an instance x is

arg max
m=1,...,k

wT
mx.
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The dual problem of (1) is

min
α

1

2

k∑
m=1

l∑
i=1

l∑
j=1

Ki,jα
m
i α

m
j +

l∑
i=1

k∑
m=1

αmi e
m
i

subject to
k∑

m=1

αmi = 0, i = 1, . . . , l, (3)

αmi ≤ 0, i = 1, . . . , l, m = 1, . . . , k, m 6= yi, (4)

αyii ≤ C, i = 1, . . . , l, (5)

where
α = [α1

1, . . . , α
k
1, . . . , α

1
l , . . . , α

k
l ]
T and Ki,j = xTi xj. (6)

Constraints (4) and (5) are often combined as

αmi ≤ Cm
yi
, where Cm

yi
=

{
0 if yi 6= m,

C if yi = m.

We separate them in order to compare with the dual problem of using L2 loss.
After solving (3), one can compute the optimal wm by

wm =
l∑

i=1

αmi xi, m = 1, . . . , k. (7)

In this paper, we extend problem (1) to use L2 loss. By changing the loss term
from ξi to ξ2

i , the primal problem becomes

min
w1,...,wk,ξ

1

2

k∑
m=1

wT
mwm + C

l∑
i=1

ξ2
i

subject to wT
yi
xi −wT

mxi ≥ emi − ξi, (8)

i = 1, . . . , l, m = 1, . . . , k.

The constraint wT
yi
xi−wT

mxi ≥ emi − ξi when m = yi can be removed because for
L2 loss, ξi ≥ 0 holds at an optimum without this constraint. We keep it here in
order to compare with the formulation of using L1 loss.

We will derive the following dual problem.

min
α

f(α)

subject to
k∑

m=1

αmi = 0, i = 1, . . . , l, (9)

αmi ≤ 0, i = 1, . . . , l, m = 1, . . . , k, m 6= yi,

where

f(α) =
1

2

k∑
m=1

l∑
i=1

l∑
j=1

Ki,jα
m
i α

m
j +

l∑
i=1

k∑
m=1

αmi e
m
i +

l∑
i=1

(αyii )2

4C
.
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Problem (9) is similar to (3), but it possesses an additional quadratic term in the
objective function. Further, the constraint on αyii is different. In (5), αyii ≤ C, but
in (9), αyii is unconstrained.2

We discuss two methods to derive the dual problem. The first is from a direct
calculation, while the second follows from the derivation of structured SVM.

2.1 A Direct Calculation to Obtain the Dual Problem

The Lagrange function of (8) is

L(w1, . . . ,wk, ξ, α̂) =
1

2

k∑
m=1

wT
mwm + C

l∑
i=1

ξ2
i

−
l∑

i=1

k∑
m=1

α̂mi (wT
yi
xi −wT

mxi − emi + ξi),

where α̂mi ≥ 0, m = 1, . . . , k, i = 1, . . . , l, are Lagrange multipliers.
The Lagrange dual problem is

max
α̂: α̂m

i ≥0, ∀i,m

(
inf

w1,...,wk,ξ
L(w1, . . . ,wk, ξ, α̂)

)
.

To minimize L under fixed α̂, we rewrite the following term in the Lagrange
function

l∑
i=1

k∑
m=1

α̂mi w
T
yi
xi =

k∑
m=1

∑
i:yi=m

k∑
s=1

α̂siw
T
yi
xi =

k∑
m=1

wT
m

l∑
i=1

(1− emi )
k∑
s=1

α̂sixi, (10)

and have

∇wmL = 0 ⇒ w∗m −
l∑

i=1

(
(1− emi )

k∑
s=1

α̂si − α̂mi
)
xi = 0, m = 1, . . . , k, (11)

∇ξiL = 2Cξi −
k∑

m=1

α̂mi = 0 ⇒ ξ∗i =

∑k
m=1 α̂

m
i

2C
, i = 1, . . . , l. (12)

We simplify (11) by defining

αmi ≡ (1− emi )
k∑
s=1

α̂si − α̂mi , i = 1, . . . , l, m = 1, . . . , k. (13)

This definition is equivalent to

αmi = −α̂mi , ∀m 6= yi, (14)

αyii =
∑

m:m 6=yi

α̂mi = −
∑

m:m6=yi

αmi . (15)

2Indeed, using
∑k

m=1 α
m
i = 0 and αmi ≤ 0, ∀m 6= yi, we have αyii ≥ 0 for both

dual problems of L1 and L2 cases.
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Therefore, we can rewrite the solution of minimizing L under fixed α̂ as

w∗m =
l∑

i=1

αmi x, m = 1, . . . , k, (16)

ξ∗i =
α̂yii + αyii

2C
, i = 1, . . . , l. (17)

By (2), (10), (11), and (14)-(17), the Lagrange dual function is

L(w∗1, . . . ,w
∗
k, ξ
∗, α̂)

=
1

2

k∑
m=1

(w∗m)Tw∗m −
l∑

i=1

k∑
m=1

α̂mi
(
(w∗yi)

Txi − (w∗m)Txi
)

− C
l∑

i=1

(ξ∗i )
2 +

l∑
i=1

k∑
m=1

α̂mi e
m
i (18)

=
1

2

k∑
m=1

(w∗m)Tw∗m −
( k∑
m=1

(w∗m)T
l∑

i=1

(1− emi )
k∑
s=1

α̂sixi

−
k∑

m=1

(w∗m)T
l∑

i=1

α̂mi xi

)
− C

l∑
i=1

(ξ∗i )
2 +

l∑
i=1

k∑
m=1

α̂mi e
m
i

= − 1

2

k∑
m=1

(w∗m)Tw∗m − C
l∑

i=1

(ξ∗i )
2 +

l∑
i=1

k∑
m=1

α̂mi e
m
i

= − 1

2

k∑
m=1

‖
l∑

i=1

αmi xi‖2 −
l∑

i=1

(α̂yii + αyii )2

4C
−

l∑
i=1

k∑
m=1

αmi e
m
i

= − 1

2

k∑
m=1

l∑
i=1

l∑
j=1

Ki,jα
m
i α

m
j −

l∑
i=1

k∑
m=1

αmi e
m
i −

l∑
i=1

(α̂yii + αyii )2

4C
. (19)

Because α̂mi , ∀m 6= yi do not appear in (19), from (14) and (15), the dual problem
is

min
α,α̂

1

2

k∑
m=1

l∑
i=1

l∑
j=1

Ki,jα
m
i α

m
j +

l∑
i=1

k∑
m=1

αmi e
m
i +

l∑
i=1

(α̂yii + αyii )2

4C
.

subject to α̂yii ≥ 0, i = 1, . . . , l,

k∑
m=1

αmi = 0, i = 1, . . . , l, (20)

αmi ≤ 0, i = 1, . . . , l, m = 1, . . . , k, m 6= yi. (21)

Because (20) and (21) imply αyii ≥ 0 and α̂yii appears only in the term (α̂yii +αyii )2,
the optimal α̂yii must be zero. After removing α̂yii , the derivation of the dual
problem is complete.
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We discuss the difference from L1 loss. If L1 loss is used, (12) becomes

k∑
m=1

α̂mi = C, (22)

and −C
∑l

i=1(ξ∗i )
2 in (18) disappears. Equation (22) and the fact α̂yii ≥ 0 lead to

the constraint (5) as follows.

αyii =
∑

m:m 6=yi

α̂mi = C − α̂yii ≤ C.

For L2 loss, without the condition in (22), αyii is unconstrained.

2.2 Using Structured SVM Formulation to Obtain the Dual
Problem

It is well known that Crammer and Singer’s multi-class SVM is a special case of
structured SVM (Tsochantaridis et al., 2005). By defining

w ≡

 w1
...
wk

 ∈ Rkn×1 and δ(i,m) ∈ Rkn×1,

with

δ(i,m) ≡


0
xi
0
−xi
0


← yi-th position

← m-th position
, if yi 6= m, and 0 if yi = m,

problem (8) can be written as

min
w,ξ

1

2
‖w‖2 + C

l∑
i=1

ξ2
i

subject to wT δ(i,m) ≥ emi − ξi, (23)

i = 1, . . . , l, m = 1, . . . , k.

This problem is in a similar form to L2-loss binary SVM, so the derivation of the
dual problem is straight forward. Following Tsochantaridis et al. (2005), the dual
problem is3

3Problem (24) is slightly different from that in Tsochantaridis et al. (2005)
because they remove the constraints ξi ≥ 0, ∀i by setting m 6= yi in (23).
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min
α̂

1

2

k∑
m=1

k∑
s=1

l∑
i=1

l∑
j=1

δ(i,m)T δ(j, s)α̂mi α̂
s
j

−
l∑

i=1

k∑
m=1

α̂mi e
m
i +

l∑
i=1

(
∑k

m=1 α̂
m
i )2

4C
(24)

subject to α̂mi ≥ 0, i = 1, . . . , l, m = 1, . . . , k.

Also, at an optimal solution, we have

w =
l∑

i=1

k∑
m=1

α̂mi δ(i,m) and ξi =

∑k
m=1 α̂

m
i

2C
. (25)

Problem (24) seems to be very different from problem (9) obtained in Section 2.1.
In fact, problem (24) is an intermediate result in our derivation. A careful check
shows

1. α̂ is the same as the Lagrange multiplier used in Section 2.1.

2. w in (25) is the same as that in (7); see Equation (11).

In Section 2.1, we introduce a new variable α and simplifies the two terms

k∑
m=1

k∑
s=1

l∑
i=1

l∑
j=1

δ(i,m)T δ(j, s)α̂mi α̂
s
j and

l∑
i=1

(
k∑

m=1

α̂mi )2

to
k∑

m=1

l∑
i=1

l∑
j=1

Ki,jα
m
i α

m
j and

l∑
i=1

(αyii )2

4C
,

respectively. An advantage of problem (9) is that Ki,j = xTi xj explicitly appears
in the objective function. In contrast, δ(i,m)T δ(j,m) does not reveal details of
the inner product between instances. However, a caveat of (9) is that it contains
some linear constraints.

An interesting question is whether the simplification from (24) to (9) allows
us to apply a simpler or more efficient optimization algorithm. This issue already
occurs for using L1 loss because we can either solve problem (3) or a form similar
to (24). However, the dual problem of L1-loss structured SVM contains a linear
constraint, but problem (24) does not.4 Therefore, for the L1 case, it is easy to
see that the simplified form (3) should be used. However, for L2 loss, problem
(24) possesses an advantage of being a bound-constrained problem. We will give
some discussion about solving (9) or (24) in Section 5.5. In all remaining places we
focus on problem (9) because existing implementations for the L1-loss formulation
all solve the corresponding problem (3).

4 See Proposition 5 in Tsochantaridis et al. (2005).
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3 Decomposition Method and Sub-problem

Decomposition methods are currently the major method to solve the dual problem
(3) of the L1 case (Crammer and Singer, 2002; Keerthi et al., 2008). At each
iteration, the k variables α1

i , . . . , α
k
i associated with an instance xi are selected for

updating, while other variables are fixed. For (3), the following sub-problem is
solved.

min
α1
i ,...,α

k
i

k∑
m=1

(
1

2
A(αmi )2 +Bmα

m
i )

subject to
k∑

m=1

αmi = 0, (26)

αmi ≤ Cm
yi
, m = 1, . . . , k,

where

A = Ki,i and Bm =
l∑

j=1

Kj,iᾱ
m
j + emi − Aᾱmi . (27)

In (27), ᾱ is the solution obtained in the previous iteration. We defer the discus-
sion on the selection of the index i in Section 5.

For problem (9), we show that the sub-problem is:

min
α1
i ,...,α

k
i

k∑
m=1

(
1

2
A(αmi )2 +Bmα

m
i ) +

(αyii )2

4C

subject to
k∑

m=1

αmi = 0, (28)

αmi ≤ 0, m = 1, . . . , k, m 6= yi,

where A and Bm are the same as (27). The derivation of (28) is as follows.
Because all elements except α1

i , . . . , α
k
i are fixed, the objective function of (9)

becomes

k∑
m=1

1

2

(
Ki,i(α

m
i )2 + 2

∑
j:j 6=i

Ki,jᾱ
m
j α

m
i

)
+

k∑
m=1

αmi e
m
i +

(αyii )2

4C
+ constants

=
k∑

m=1

(1

2
Ki,i(α

m
i )2 + (

l∑
j=1

Kj,iᾱ
m
j + emi −Ki,iᾱ

m
i )αmi

)
+

(αyii )2

4C
+ constants.

(29)

Equation (29) then leads to the objective function of (28), while the constraints
are directly obtained from (9). Note that

Bm = w̄T
mxi + emi −Ki,iᾱ

m
i (30)
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if

w̄m =
l∑

i=1

ᾱmi xi, m = 1, . . . , k

are maintained.5

4 Solving the Sub-problem

We discuss how to solve the sub-problem when A > 0. If A = 0, then xi = 0.
Thus this instance gives a constant value ξi = 1 to the primal objective function
(8), and the value of αmi , m = 1, . . . , k have no effect on wm defined in (16), so
we can skip solving the sub-problem.

We follow the approach by Crammer and Singer to solve the sub-problem,
although there are some interesting differences. Their method first computes

Dm = Bm + ACm
yi
, m = 1, . . . , k.

Then it starts with a set Φ = φ and sequentially adds one index m to Φ by the
decreasing order of Dm until the following inequality is satisfied.

β =

−AC +
∑
m∈Φ

Dm

|Φ|
≥ max

m/∈Φ
Dm. (31)

The optimal solution of (26) is computed by:

αmi = min(Cm
yi
,
β −Bm

A
), m = 1, . . . , k. (32)

Crammer and Singer gave a lengthy proof to show the correctness of this method.
Our contribution here is to derive the algorithm and prove its correctness by easily
analyzing the KKT optimality condition.

We now derive an algorithm for solving (28). Let us define Ayi ≡ A + 1/2C.
The KKT conditions of (28) indicate that there are scalars β, ρm, m = 1, . . . , k,
such that

k∑
m=1

αmi = 0, (33)

αmi ≤ 0, ∀m 6= yi, (34)

ρmα
m
i = 0, ρm ≥ 0, ∀m 6= yi, (35)

Aαmi +Bm − β = −ρm, ∀m 6= yi, (36)

Ayiα
yi
i +Byi − β = 0. (37)

5See details of solving linear Crammer and Singer’s multi-class SVM in Keerthi
et al. (2008).
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Using (34), Equations (35) and (36) are equivalent to

Aαmi +Bm − β = 0, if αmi < 0, m 6= yi, (38)

Aαmi +Bm − β = Bm − β ≤ 0, if αmi = 0, m 6= yi. (39)

Now KKT conditions become (33)-(34), (37), and (38)-(39). If β is known, we
prove that

αmi ≡

{
min(0, β−Bm

A
) if m 6= yi,

β−Byi

Ayi
if m = yi,

(40)

satisfies all KKT conditions except (33). Clearly, the way to get αmi in (40) ensures
αmi ≤ 0, ∀m 6= yi, so (34) holds. From (40), when β < Bm, we have αmi < 0 and
β − Bm = Aαmi . Thus, (38) is satisfied. Otherwise, β ≥ Bm and αmi = 0 satisfy
(39). Also notice that αyii is directly obtained from (37).

The remaining task is how to find β such that (33) holds. From (33), (37),
and (38) we obtain

Ayi
∑

m:αm
i <0

(β −Bm) + A(β −Byi) = 0.

Hence,

β =

AByi + Ayi
∑

m:αm
i <0

Bm

A+
∑

m:αm
i <0

Ayi
=

A
Ayi
Byi +

∑
m:αm

i <0

Bm

A
Ayi

+ |{m|αmi < 0}|
. (41)

Combining (41) and (39), we begin with a set Φ = φ, and then sequentially
add one index m to Φ by the decreasing order of Bm, m = 1, . . . , k, m 6= yi, until

h =

A
Ayi
Byi +

∑
m∈Φ

Bm

A
Ayi

+ |Φ|
≥ max

m/∈Φ
Bm. (42)

Let β = h when (42) is satisfied. Algorithm 1 lists the details for solving the
sub-problem (28). To prove (33), it is sufficient to show that β and αmi , ∀m,
obtained by Algorithm 1 satisfies (41). This is equivalent to showing that the set
Φ of indices included in step 5 of Algorithm 1 satisfies

Φ = {m | αmi < 0}.

From (40), we prove the following equivalent result.

β < Bm, ∀m ∈ Φ and β ≥ Bm, ∀m /∈ Φ. (43)

The second inequality immediately follows from (42). For the first, assume t is
the last element added to Φ. When it is considered, (42) is not satisfied yet, so

A
Ayi
Byi +

∑
m∈Φ\{t}

Bm

A
Ayi

+ |Φ| − 1
< Bt. (44)
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ALGORITHM 1: Solving the sub-problem

1. Given A, Ayi , and B = {B1, . . . , Bk}.
2. D ← B
3. Swap D1 and Dyi , then sort D \ {D1} in decreasing order.
4. r ← 2, β ← D1 × A/Ayi
5. While r ≤ k and β/(r − 2 + A/Ayi) < Dr

5.1. β ← β +Dr

5.2. r ← r + 1

6. β ← β/(r − 2 + A/Ayi)
7. αmi ← min

(
0, (β −Bm)/A

)
, ∀m 6= yi

8. αyii ← (β −Byi)/Ayi

Using (44) and the fact that elements in Φ are added in the decreasing order of
Bm,

A

Ayi
Byi +

∑
m∈Φ

Bm =
A

Ayi
Byi +

∑
m∈Φ\{t}

Bm +Bt

< (|Φ| − 1 +
A

Ayi
)Bt +Bt = (|Φ|+ A

Ayi
)Bt

≤ (|Φ|+ A

Ayi
)Bs, ∀s ∈ Φ.

Thus, we have the first inequality in (43).
With all KKT conditions satisfied, Algorithm 1 obtains an optimal solution of

(28).
By comparing (31), (32) and (42), (40) respectively, we can see that the pro-

cedures for L1 loss and L2 loss are similar but different in several aspects. In
particular, because αyii is unconstrained, Byi is considered differently from other
Bm’s in (42).

5 Other Issues and Extensions

In this section, we discuss other details of the decomposition method. Some of
them are similar to those for the L1 case. We also extend problems (8)-(9) to more
general settings. In the end we discuss advantages and disadvantages of solving
two dual forms (9) and (24).

5.1 Extensions to Use Kernels

It is straightforward to extend our algorithm to use kernels. The only change is
to replace

Ki,j = xTi xj
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in (6) with
Ki,j = φ(xi)

Tφ(xj), (45)

where φ(x) is a function mapping data to a higher dimensional space.

5.2 Working Set Selection

We mentioned in Section 3 that at each iteration of the decomposition method,
an index i is selected so that α1

i , . . . , α
k
i are updated. This procedure is called

working set selection. If kernels are not used, we follow Keerthi et al. (2008) to
sequentially select i ∈ {1, . . . , l}.6 For linear SVM, it is known that more sophisti-
cated selections such as using gradient information may not be cost-effective; see
the detailed discussion in Section 4.1 of Hsieh et al. (2008).

For kernel SVM, we can use gradient information for working set selection
because the cost is relatively low compared to that of kernel evaluations. In
Crammer and Singer (2001), to solve problems with L1 loss, they select an index
by

i = arg max
i∈{1,...,l}

ϕi, (46)

where
ϕi = max

1≤m≤k
ĝmi − min

m:αm
i <C

m
yi

ĝmi , (47)

and ĝmi , i = 1, . . . , l, m = 1, . . . , k, are the gradient of (3)’s objective function.
The reason behind (46) is that ϕi shows the violation of the optimality condition.
Note that for problem (3), α is optimal if and only if α is feasible and

ϕi = 0, i = 1, . . . , l. (48)

See the derivation in Crammer and Singer (2001, Section 5). For L2 loss, we can
apply a similar setting by

ϕi = max
1≤m≤k

gmi − min
m:αm

i <0 or m=yi
gmi , i = 1, . . . , l,

where

gmi =
l∑

j=1

Ki,jα
m
j + emi + (1− emi )

αmi
2C

, i = 1, . . . , l, m = 1, . . . , k,

are the gradient of the objective function in (9). Note that Cm
yi

in (47) becomes 0
here.

5.3 Stopping Condition

From (48), a stopping condition of the decomposition method can be

max
i
ϕi ≤ ε,

where ε is the stopping tolerance. The same stopping condition can be used for
the L2 case.

6In practice, for faster convergence, at each cycle of l steps, they sequentially
select indices from a permutation of {1, . . . , l}.
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5.4 Extension to Assign Different Regularization Parame-
ters to Each Class

In some applications, we may want to assign different regularization parameter Ci
to class i. This can be easily achieved by replacing C in earlier discussion with Ci.

5.5 Solving Problem (9) Versus Problem (24)

In Section 2.2, we mentioned an issue of solving problem (9) or problem (24).
Based on the investigation of decomposition methods so far, we give some brief
discussion.

Some works for structured SVM have solved the dual problem, where (24)
is a special case. For example, in Chang et al. (2010), a dual coordinate descent
method is applied for solving the dual problem of L2-loss structured SVM. Because
(24) does not contain any linear constraint, they are able to update a single α̂mi at
a time.7 This setting is related to the decomposition method discussed in Section
3, although ours update k variables at a time. If α̂mi is selected for update, the
computational bottleneck is on calculating

wT δ(i,m) = wT
yi
xi −wT

mxi (49)

for constructing a one-variable sub-problem.8 From (11), Equation (49) involves
the calculation of

l∑
j=1

α̂mj Kj,i and
l∑

j=1

α̂yij Kj,i. (50)

The cost of 2l kernel evaluations is O(ln) if each kernel evaluation takes O(n). For
our decomposition method to solve (9), to update k variables αmi , m = 1, . . . , k,
together, the number of kernel evaluations is only l; see Equations (27) and (29).
More precisely, the complexity of Algorithm 1 to solve the sub-problem (28) is

O(k log k + ln+ kl), (51)

where O(k log k) is for sorting Bm, ∀m 6= yi, and O(kl) is for obtaining Bm, m =
1, . . . , k in Equation (27). If k is not large, O(ln) is the dominant term in (51).
This analysis indicates that regardless of how many elements in αmi , m = 1, . . . , k,
are updated, we always need to calculate the i-th kernel column Kj,i, j = 1, . . . , l.
In this regard, the decomposition method for problem (9) by solving a sequence of
sub-problems (28) nicely allows us to update as many variables as possible under
a similar number of kernel evaluations.

If kernel is not applied, interestingly the situation becomes different. The O(ln)
cost of computing (50) is reduced to O(n) because wyi and wm are available. If

7This is not possible for the dual problem of L1-loss structured SVM. We have
mentioned in Section 2.2 that it contains a linear constraint.

8 We omit details because the derivation is similar to that for deriving the
sub-problem (28).
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Algorithm 1 is used, from (30), the complexity in (51) for updating k variables
becomes

O(k log k + kn).

For updating an α̂mi by (49), the cost is O(n). Therefore, if log k < n, the cost
of updating αmi , m = 1, . . . , k, together is k times of updating a single variable.
Then, the decomposition method for solving problem (9) and sub-problem (28)
may not be better than a coordinate descent method for solving problem (24).
Note that we have focused on the cost per sub-problem, but there are many other
issues such as the convergence speed (i.e., the number of iterations). Memory
access also affects the computational time. For the coordinate descent method
to update a variable α̂mi , the corresponding wm,xi, and α̂mi must be accessed.
In contrast, the approach of solving sub-problem (28) accesses data and variables
more systematically. An important future work is to conduct a serious comparison
and identify the better approach.

6 Experiments

In this section, we compare the proposed method for L2 loss with an existing
implementation for L1 loss. We check linear as well as kernel multi-class SVMs.
Moreover, a comparison of sensitivity to parameters is also conducted. Our imple-
mentation is extended from those in LIBLINEAR (Fan et al., 2008) and BSVM
(Hsu and Lin, 2002), which respectively include solvers for linear and kernel
L1-loss Crammer and Singer multi-class SVM. Programs for experiments in this
paper are available at http://www.csie.ntu.edu.tw/~cjlin/papers/l2mcsvm/
codes.zip. All data sets used are available at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

6.1 Linear Multi-class SVM

We check both training time and test accuracy of using L1 and L2 losses. We
consider the four data sets used in Keerthi et al. (2008): news20, MNIST, sector
and rcv1. We select the regularization parameter C by checking five-fold cross-
validation (CV) accuracy of using values in {2−5, 2−4, . . . , 25}. The stopping tol-
erance is ε = 0.1. The details of the data sets are listed in Table 1, and the
experiment results can be found in Table 2

The accuracy values are comparable. One may observe that the training time
of using L1 loss is less. This result is opposite to that of binary classification; see
experiments in Hsieh et al. (2008). In binary classification, when C approaches
zero, the Hessian matrix of L2-loss SVM is close to the matrix I/(2C), where I is
the identity matrix. Thus, the optimization problem is easier to solve. However,
for Crammer and Singer’s multi-class SVM, when C approaches zero, only l of the
Hessian’s kl diagonal elements become close to 1/(2C). This may be the reason
why for multi-class SVM, using L2 loss does not lead to faster training time.
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Table 1: Data sets for experiments of linear multi-class SVMs. n is the number of
features and k is the number of classes.

data set #training #testing n k C for L1 loss C for L2 loss
news20 15, 395 3, 993 62, 061 20 2−1 2−1

MNIST 60, 000 10, 000 780 10 2−5 2−5

sector 6, 412 3, 207 55, 197 105 20 20

rcv1 15, 564 518, 571 47, 236 53 20 20

Table 2: Linear multi-class SVMs: we compare training time (in seconds) and test
accuracy between L1 loss and L2 loss.

L1 loss L2 loss
data set training time test accuracy training time test accuracy
news20 0.69 85.50% 0.80 85.00%
MNIST 2.98 92.93% 11.64 92.54%
sector 2.98 94.36% 3.59 94.14%
rcv1 1.66 88.64% 1.53 88.50%

6.2 Kernel Multi-class SVM

We use the same data sets and the same procedure in Hsu and Lin (2002) to
compare test accuracy, training time and sparsity (i.e., percentage of training
data as support vectors) of using L1 and L2 losses. We use the RBF kernel

K(xi,xj) = e−γ||xi−xj ||2 .

We fix the cache size for the kernel matrix as 2048 MB. The stopping tolerance
is set to be ε = 0.001 in all data sets except letter and shuttle, whose stopping
tolerance is ε = 0.1 for avoiding lengthy training time.

The data set description is in Table 3 and the results are listed in Table 4. For
dna, satimage, letter and shuttle, both training and test sets are available. We follow
Hsu and Lin (2002) to split the training data to 70% training and 30% validation
for finding parameters among C = {2−2, 2−1, . . . , 212} and γ = {2−10, 2−9, . . . , 24}.
We then train the whole training set by the best parameters and report the test
accuracy and the model sparsity. For the rest data sets whose test sets are not
available, we report the best ten-fold CV accuracy and the model sparsity.9 From
Table 4, we can see that L2-loss multi-class SVM gives comparable accuracy to
L1-loss SVM. Note that the accuracy and the parameters of L1-loss multi-class
SVM on some data sets are slightly different from those in Hsu and Lin (2002)
because of the random data segmentation in the validation procedure and the
different versions of the BSVM code.

Training time and sparsity are very different between using L1 and L2 losses
because they highly depend on the parameters used. To remove the effect of
different parameters, in Section 6.3, we present the average result over a set of
parameters.

9The sparsity is the average of the 10 models in the CV procedure.
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Table 3: Data sets for experiments of kernel multi-class SVMs. n is the number
of features and k is the number of classes.

data set #training #testing n k (C,γ) for L1 loss (C,γ) for L2 loss
iris 150 0 4 3 (23, 2−5) (210, 2−7)
wine 178 0 13 3 (20, 2−2) (21, 2−3)
glass 214 0 13 6 (21, 23) (2−1, 23)
vowel 528 0 10 11 (22, 21) (24, 21)
vehicle 846 0 18 4 (27, 2−3) (25, 2−4)
segment 2, 310 0 19 7 (23, 23) (27, 20)
dna 2, 000 1, 186 180 3 (21, 2−6) (21, 2−6)
satimage 4, 435 2, 000 36 6 (22, 22) (24, 22)
letter∗ 15, 000 5, 000 16 26 (24, 22) (211, 24)
shuttle∗ 43, 500 14, 500 9 7 (210, 24) (29, 24)
*: ε = 0.1 is used.

6.3 Sensitivity to Parameters

Parameter selection is a time consuming process. To avoid checking many pa-
rameters, we hope a method is not sensitive to parameters. In this section, we
compare the sensitivity of L1 and L2 losses by presenting the average performance
over a set of parameters.

For linear multi-class SVM, 11 values of C are selected: {2−5, 2−4, . . . , 25},
and we present the average and the standard deviation of training time and test
accuracy. The results are in Table 5. For the kernel case, We pick C and γ from the
two sets {2−1, 22, 25, 28} and {2−6, 2−3, 20, 23}, respectively, so 16 different results
are generated.10 We then report average and standard deviation in Table 6.

From Tables 5 and 6, L2 loss is worse than L1 loss on the average training time
and sparsity. The higher percentage of support vectors is the same as the situation
in binary classification because the squared hinge loss leads to many small but non-
zero αmi . Interestingly, the average performance (test or CV accuracy) of L2 loss
is better. Therefore, if using L2 loss, it may be easier to locate a good parameter
setting. We find that the same situation occurs in binary classification, although
this result was not clearly mentioned in previous studies. An investigation shows
that L2 loss gives better accuracy when C is small. In this situation, both L1-
and L2-loss SVM suffer from the underfitting of training data. However, because
L2 loss gives a higher penalty than L1 loss, underfitting is less severe.

6.4 Summary of Experiments

Based on the experiments, we have the following findings.

10We use a subset of (C, γ) values in Section 6.2 to save the running time. To
report the average training time, we must run all jobs in the same machine. In
contrast, several machines were used in Section 6.2 to obtain CV accuracy of all
parameters.
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Table 4: Kernel multi-class SVMs: we compare training time (in seconds), test
or CV accuracy, and sparsity between L1 loss and L2 loss. nSV represents the
percentage of training data that are support vectors.

L1 loss L2 loss
training test or CV training test or CV

data set time accuracy nSV time accuracy nSV
iris 0.07 96.67% 37.33% 1.53 98.00% 16.67%
wine 0.03 98.31% 28.65% 0.03 98.31% 33.96%
glass 0.19 73.83% 80.01% 0.18 74.30% 98.91%
vowel 2.61 98.86% 67.93% 2.59 98.86% 72.31%
vehicle 27.73 86.52% 53.73% 24.14 86.41% 65.29%
segment 14.37 97.62% 46.65% 21.68 97.62% 19.08%
dna 1.43 95.87% 46.90% 1.68 95.62% 56.10%
satimage 5.35 92.35% 60.41% 5.35 92.45% 60.92%
letter∗ 87.46 97.76% 42.56% 136.99 97.14% 78.56%
shuttle∗ 64.88 99.94% 0.66% 60.98 99.94% 1.41%
*: ε = 0.1 is used.

Table 5: Sensitivity to parameters: linear multi-class SVMs. We present
average±standard deviation.

L1 loss L2 loss
data set training time test accuracy training time test accuracy
news20 1.81± 1.83 83.85± 1.33% 3.59± 4.70 84.39± 0.41%
MNIST 340.67± 532.21 92.68± 0.20% 1348.45± 1934.30 92.25± 0.21%
sector 5.96± 5.45 93.59± 0.77% 7.66± 8.02 93.91± 0.46%
rcv1 2.66± 2.27 86.78± 2.42% 3.83± 4.28 87.78± 0.89%

1. If using the best parameter, L2 loss gives comparable accuracy to L1 loss.
For the training time and the number of support vectors, L2 loss is better
for some problems, but worse for some others. The situation highly depends
on the chosen parameter.

2. If we take the whole procedure of parameter selection into consideration, L2
loss is worse than L1 loss on training time and sparsity. However, the region
of suitable parameters is larger. Therefore, we can check fewer parameters
if using L2 loss.

7 Conclusions

This paper extends Crammer and Singer’s multi-class SVM to apply L2 loss. We
give detailed derivations and discuss some interesting differences from the L1 case.
Our results serve as a useful reference for those who intend to use Crammer and
Singer’s method with L2 loss. Finally, we have extended the software BSVM (after
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Table 6: Sensitivity to parameters: kernel multi-class SVMs. We present
average±standard deviation. nSV represents the percentage of training data that
are support vectors.

L1 loss
data set training time test or CV accuracy nSV
iris 0.10± 0.12 93.38± 6.93% 36.02± 17.74%
wine 0.09± 0.03 96.45± 0.95% 54.38± 31.15%
glass 5.57± 9.55 66.59± 5.24% 84.07± 8.74%
vowel 53.86± 116.73 86.38± 15.12% 81.94± 13.17%
vehicle 37.21± 69.87 76.85± 5.99% 75.84± 16.68%
segment 57.43± 72.18 95.35± 2.91% 33.30± 14.37
dna 6.29± 3.98 82.05± 7.85% 84.59± 20.68%
satimage 80.70± 167.67 89.37± 2.83% 47.63± 19.66%
letter∗ 1698.97± 3908.05 90.51± 9.18% 54.96± 18.30%
shuttle∗ 396.53± 692.35 98.66± 1.89% 8.07± 6.63%

L2 loss
iris 0.18± 0.20 94.96± 2.12% 45.00± 25.68%
wine 0.11± 0.06 96.73± 1.11% 58.66± 30.97%
glass 14.86± 28.12 68.84± 3.40% 88.99± 9.61%
vowel 59.05± 118.68 89.96± 12.15% 87.80± 12.72%
vehicle 75.25± 157.46 78.93± 4.91% 81.10± 16.52%
segment 138.66± 232.03 96.11± 2.07% 44.12± 20.86%
dna 14.49± 8.11 82.21± 7.73% 88.75± 19.72%
satimage 173.93± 397.54 89.84± 2.21% 55.05± 18.89%
letter∗ 3205.32± 7926.28 92.28± 7.24% 63.53± 21.32%
shuttle∗ 2844.68± 6056.00 98.79± 1.62% 16.95± 11.00%
*: ε = 0.1 is used.

version 2.07) to include the proposed implementation.

Acknowledgment

This work was supported in part by the National Science Council of Taiwan via
the grant 98-2221-E-002-136-MY3. The authors thank the anonymous reviewers
and Ming-Wei Chang for valuable comments. We also thank Yong Zhuang and
Wei-Sheng Chin for their help in finding errors of this paper.

References

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 144–152. ACM Press, 1992.

Ming-Wei Chang, Vivek Srikumar, Dan Goldwasser, and Dan Roth. Structured

18



output learning with indirect supervision. In Proceedings of the Twenty Seven
International Conference on Machine Learning (ICML), pages 199–206, 2010.

Corina Cortes and Vladimir Vapnik. Support-vector network. Machine Learning,
20:273–297, 1995.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multi-
class kernel-based vector machines. Journal of Machine Learning Research, 2:
265–292, 2001.

Koby Crammer and Yoram Singer. On the learnability and design of output codes
for multiclass problems. Machine Learning, (2–3):201–233, 2002.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, 2008. URL http://www.csie.ntu.edu.tw/

~cjlin/papers/liblinear.pdf.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellaman-
ickam Sundararajan. A dual coordinate descent method for large-scale linear
SVM. In Proceedings of the Twenty Fifth International Conference on Machine
Learning (ICML), 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/

cddual.pdf.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-class support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

S. Sathiya Keerthi, Sellamanickam Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh,
and Chih-Jen Lin. A sequential dual method for large scale multi-class linear
SVMs. In Proceedings of the Forteenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 408–416, 2008. URL http:

//www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. Large margin methods for structured and interdependent output variables.
Journal of Machine Learning Research, 6:1453–1484, 2005.

A Solving the Sub-problems when A ≤ 0

Our decomposition method only solves the sub-problem when A > 0. To cover
the case when K is not a valid kernel and Ki,i is any possible value, we still need
to solve the sub-problems when A ≤ 0.

19

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/sdm_kdd.pdf


A.1 A = 0

When A = 0, for L1 loss, the sub-problem (26) reduces to a linear programming
problem. Define

m̄ ≡ arg max
m:m 6=yi

Bm,

then the optimal solution is

αmi = 0, m = 1, . . . , k if Byi −Bm̄ ≥ 0,
αyii = C
αm̄i = −αyii
αmi = 0, ∀m 6= yi and m 6= m̄,

if Byi −Bm̄ < 0.

It is more complicated in the L2-loss case, because there is a quadratic term of
αyii . To solve the sub-problem (28), we reformulate it by the following procedure.
From footnote 2, we know αyii ≥ 0. For any fixed αyii , the sub-problem becomes

min
αm
i ,m6=yi

∑
m:m6=yi

Bmα
m
i

subject to
∑

m:m6=yi

αmi = −αyii ,

αmi ≤ 0, ∀m 6= yi.

Clearly, the solution is

αmi =

{
−αyii if m = m̄,

0 otherwise.
(52)

Therefore, the sub-problem (28) is reduced to the following one-variable problem.

min
α
yi
i ≥0

(αyii )2

4C
+ (Byi −Bm̄)αyii . (53)

The solution of (53) is

αyii = max
(
0,−2(Byi −Bm̄)C

)
. (54)

Using (52) and (54), the optimal solution can be written as

αmi = 0, m = 1, . . . , k if Byi −Bm̄ ≥ 0,
αyii = −2(Byi −Bm̄)C
αm̄i = −αyii
αmi = 0, ∀m 6= yi and m 6= m̄

if Byi −Bm̄ < 0.
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A.2 A < 0

For any given αyii that satisfies their corresponding constraints, both (26) and (28)
are equivalent to

min
αm
i ,m 6=yi

∑
m 6=yi

1

2
A
(
(αmi +

Bm

A
)2
)

subject to
∑
m 6=yi

αmi = −αyii ,

αmi ≤ 0, ∀m 6= yi.

When A < 0, it is equivalent to

max
αm
i ,m 6=yi

∑
m 6=yi

(αmi )2 +
∑
m 6=yi

2
Bm

A
αmi

subject to
∑
m6=yi

αmi = −αyii , (55)

αmi ≤ 0, ∀m 6= yi. (56)

By constraints (55) and (56), we have∑
m 6=yi

(αmi )2 ≤ (
∑
m 6=yi

αmi )2 = (−αyii )2, and

∑
m6=yi

Bm

A
αmi ≤ (

Bm̄

A

∑
m6=yi

αmi ) = −Bm̄

A
αyii .

Note that when A < 0,

m̄ = arg max
m:m 6=yi

Bm = arg min
m:m6=yi

Bm

A
.

Thus clearly the optimal solution is

αmi =

{
−αyii if m = m̄,

0 otherwise.

Sub-problem (26) is then reduced to the following one-variable problem.

min
C≥αyi

i ≥0
A(αyii )2 + (Byi −Bm̄)αyii = A(αyii +

Byi −Bm̄

2A
)2 + constants.

Its solution is

αyii =

{
0 if

Byi−Bm̄

2A
≤ −C

2
,

C otherwise.

Combine them together, the optimal solution of (26) when A < 0 is

αmi = 0, m = 1, . . . , k if Byi −Bm̄ ≥ −AC,
αyii = C
αm̄i = −αyii
αmi = 0, ∀m 6= yi and m 6= m̄

if Byi −Bm̄ < −AC. (57)
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When A = 0, −AC = 0. Therefore, (57) can be used in L1 loss for A ≤ 0.
For problem (28), when A < 0, it is reduced to another one-variable problem.

min
α
yi
i ≥0

A∗(αyii )2 + (Byi −Bm̄)αyii , (58)

where A∗ ≡ A+ 1
4C

. If A∗ = 0, then (58) reduces to a trivial problem with optimal
solution

αyii =

{
0 if Byi −Bm̄ ≥ 0,

∞ if Byi −Bm̄ < 0.

Thus the optimal solution of (28) when A∗ = 0 is

αmi = 0, m = 1, . . . , k if Byi −Bm̄ ≥ 0,
αyii =∞
αm̄i = −∞
αmi = 0, ∀m 6= yi and m 6= m̄,

if Byi −Bm̄ < 0.

If A∗ 6= 0, (58) is equivalent to

min
α
yi
i ≥0

A∗(αyii +
Byi −Bm̄

2A∗
)2.

When A∗ < 0, the optimal solution of (28) is

αyii =∞, αm̄i = −∞, and αmi = 0, ∀m 6= yi and m 6= m̄.

While if A∗ > 0, A < 0, the optimum occurs at

αmi = 0, m = 1, . . . , k if Byi −Bm̄ ≥ 0,
αyii = −(Byi −Bm̄)

2A∗
αm̄i = −αyii
αmi = 0, ∀m 6= yi and m 6= m̄

if Byi −Bm̄ < 0. (59)

Note that when A = 0, 1/2A∗ = 2C. Thus (59) can be used in L2 loss for
A∗ > 0, A ≤ 0.
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