
Supplementary Materials of “Limited-memory Common-directions Method for
Distributed L1-regularized Linear Classification”

Wei-Lin Chiang∗ Yu-Sheng Li† Ching-pei Lee‡ Chih-Jen Lin§

I Introduction

In this document, we present additional details and
more experimental results.

II Derivation of the Direction Used in LBFGS

By using only the information from the last m itera-
tions, the definition of Bk in BFGS becomes the follow-
ing in LBFGS.

Bk = V Tk−1 · · ·V Tk−mBk0Vk−m · · ·Vk−1

(II.1)

+ ρk−mV
T
k−1 · · ·V Tk−m+1sk−msTk−mVk−m+1 · · ·Vk−1

+ · · ·+ ρk−1sk−1s
T
k−1.

Note that in BFGS, Bk0 is a fixed matrix, but in LBFGS,
Bk0 can change with k, provided its eigenvalues are
bounded in a positive interval over k. A common choice
is

(II.2) Bk0 =
sTk−1uk−1

uTk−1uk−1
I.

By expanding (II.1), dk can be efficiently obtained
by O(m) vector operations as shown in Algorithm II.
The overall procedure of LBFGS is summarized in
Algorithm I.

III More Details of Limited-memory
Common-directions Method

A sketch of the procedure for L1-regularized problems
is in Algorithm III.

IV Line Search in Algorithms for
L2-regularized Problems

Here we present the trick mentioned in Section 2.3 in
the paper. At each line search iteration, we obtain
wTxi,d

Txi,∀i first, and then use O(l) cost to calculate

(w + αd)Txi = wTxi + αdTxi,∀i.

∗National Taiwan University. b02902056@ntu.edu.tw
†National Taiwan University. b03902086@ntu.edu.tw
‡University of Wisconsin-Madison. ching-pei@cs.wisc.edu
§National Taiwan University. cjlin@csie.ntu.edu.tw

Algorithm I LBFGS.

1: Given w0, integer m > 0, and β, γ ∈ (0, 1)
2: w ← w0

3: for k = 0, 1, 2, . . . do
4: Calculate ∇f(w)
5: Calculate the new direction

d ≡−B∇f(w) ≈ −∇2f(w)−1∇f(w)

by using information of the previous m iterations
(Algorithm II)

6: Calculate ∇f(w)Td
7: α← 1,wold ← w
8: while true do
9: w ← wold + αd

10: Calculate the objective value f(w) in (2.2)
11: if f(w)− f(wold) ≤ γ∇f(wold)T (w−wold)
12: break
13: α← αβ

14: Update P with w−wold and ∇f(w)−∇f(wold)

Because wTxi can be obtained from the previous itera-
tion, dTxi is the only O(#nnz) operation needed. The
line search cost is reduced from

#line-search steps×O(#nnz)

to
1×O(#nnz) + #line-search steps×O(l).

This trick is not applicable to L1-regularized problems
because the new point is no longer w + αd.

V More on the Distributed Implementation

V.1 Complexity. The distributed implementation
as mentioned in Section 5 is shown in Algorithm VI.
Then we discuss the complexity below.

(2 + #line-search steps)×O(#nnz) +O(lm2) +O(mn)

K

+O(m3)

VI More Experiments

The data sets used in this section are shown in Table (I).

b02902056@ntu.edu.tw
b03902086@ntu.edu.tw
ching-pei@cs.wisc.edu
cjlin@csie.ntu.edu.tw


Algorithm II LBFGS Two-loop recursion.

1: q ← −∇f(w)
2: for i = k − 1, k − 2, . . . , k −m do
3: αi ← sTi q/s

T
i ui

4: q ← q − αiui
5: r ← (sTk−1uk−1/u

T
k−1uk−1)q

6: for i = k −m, k −m+ 1, . . . , k − 1 do
7: βi ← uTi r/s

T
i ui

8: r ← r + (αi − βi)si
9: d← r

Algorithm III Limited-memory common-directions
method for L1-regularized problems.

1: while true do
2: Compute ∇Pf(w) by (2.6)
3: Solve the sub-problem (3.21)
4: Let the direction be d = P t
5: for j = 1, . . . , n do
6: Align dj with −∇P

j f(w) by (2.11)

7: α← 1, wold ← w
8: while true do
9: Calculate w from wold + αd by (2.12)

10: if f(w)−f(wold) ≤ γ∇Pf(wold)T (w−wold)
11: break
12: α← αβ

13: Update P and XP

VI.1 More Results by Using Different C Val-
ues. In Figure (I), we present more results with

C = {0.1CBest , CBest , 10CBest },

where CBest is the value to achieve the highest cross
validation accuracy. The results are similar to CBest

presented in Section 6, but we observe that NEWTON
converges slowly in larger C cases.

VI.2 More Results on Distributed Experi-
ments. In Figure (II), we present more data sets for
the distributed experiments. All settings are the same
as in Section 6.

Table (I): Data statistics.

Data set #instances #features #nonzeros CBest

real-sim 72,309 20,958 3,709,083 16
rcv1 test 677,399 47,226 49,556,258 4
news20 19,996 1,355,191 9,097,916 1024
yahoojp 176,203 832,026 23,506,415 2
url 2,396,130 3.231,961 277,058,644 8
yahookr 460,554 3,052,939 156,436,656 4
epsilon 400,000 2,000 800,000,000 0.5
webspam 350,000 16,609,143 1,304,697,446 64
KDD2010-b 19,264,097 29,890,096 566,345,888 0.5
criteo 45,840,617 1,000,000 1,787,773,969 0.5
avazu-site 25,832,830 999,962 387,492,144 1
kdd2012 149,639,105 54,686,452 1,646,030,155 2



Algorithm IV A distributed implementation of
OWLQN.

1: for k = 0, 1, 2, . . . do
2: Compute ∇Pf(w) by (2.6) and

∇L(w) = C
⊕K

r=1
(XJr,:)

T


...

ξ′(yiw
Txi)

...


i∈Jr

.

. O(#nnz/K); O(n) comm.
3: Compute the search direction dJ̄r , r = 1, . . . ,K

by Algorithm V . O(nm/K); O(m) comm.
4: An allgather operation to let each node has

d =

dJ̄1...
dJ̄K


. O(n/K) comm.

5: for j = 1, . . . , n do
6: Align dj with −∇P

j f(w) by (2.11)

7: α← 1, wold ← w
8: while true do
9: Calculate w from wold + αd by (2.12) and

f(w) = ‖w‖1 + C
⊕K

r=1

∑
i∈Jr

ξ(yiw
Txi)

. O(#nnz/K); O(1) comm.
10: if f(w)−f(wold) ≤ γ∇Pf(wold)T (w−wold)
11: break
12: α← αβ

13: sk ← w −wold, uk ← ∇f(w)−∇f(wold)
14: Remove 1st column of S and U if needed and

S ←
[
S sk

]
, U ←

[
U uk

]
15: ρk ←

⊕K
r=1(uk)T

J̄r
(sk)J̄r . O(n/K); O(1)

comm.

Algorithm V Distributed OWLQN Two-loop recur-
sion

1: if k = 0 return dJ̄r ← −∇
P
J̄r
f(w)

2: for r = 1, . . . ,K do in parallel
3: qJ̄r ← −∇

P
J̄r
f(w) . O(n/K)

4: for i = k − 1, k − 2, . . . , k −m do
5: Calculate αi by

αi ←
⊕K

r=1(si)
T
J̄r
qJ̄r

ρi

. O(n/K); O(1) comm.
6: for r = 1, . . . ,K do in parallel
7: qJ̄r ← qJ̄r − αi(ui)J̄r . O(n/K)

8: Calculate

uTk−1uk−1 ←
K⊕
r=1

(uk−1)TJ̄r (uk−1)J̄r

. O(n/K); O(1) comm.
9: for r = 1, . . . ,K do in parallel

10: rJ̄r ←
ρk−1

uT
k−1uk−1

rJ̄r . O(n/K)

11: for i = k −m, k −m+ 1, . . . , k − 1 do
12: Calculate βi by

βi ←
⊕K

r=1(ui)
T
J̄r
rJ̄r

ρi

. O(n/K); O(1) comm.
13: for r = 1, . . . ,K do in parallel
14: rJ̄r ← rJ̄r + (αi − βi)(si)J̄r . O(n/K)

return dJ̄r ← rJ̄r , r = 1, . . . ,K



Algorithm VI Distributed limited-memory common-
directions method.

1: while true do
2: Compute ∇Pf(w) by (2.6) and

∇L(w) = C
⊕K

r=1
(XJr,:)

T


...

ξ′(yiw
Txi)

...


i∈Jr

.

. O(#nnz/K); O(n) comm.
3: Calculate

XJr,:∇Pf(w)

. O(#nnz/K)
4: Remove 1st column of P and U if needed and

PJr,: ←
[
PJr,: ∇P

Jr
f(w)

]
UJr,: ←

[
UJr,: XJr,:∇Pf(w)

]
5: Calculate

(XP )TDw(XP ) =
⊕K

r=1
(UJr,:)

T (Dw)Jr,JrUJr,:

. O(lm2/K), O(m2) comm.

−PT∇Pf(w) = −
⊕K

r=1
(PJ̄r,:)

T∇P
J̄r
f(w)

. O(mn/K); O(m) comm.
6: Solve(

(XP )TDw(XP )
)
t = −PT∇Pf(w)

. O(m3)
7: Let the direction be

d = P t =
[
PJ̄1,:t, . . . , PJ̄K ,:t

]T
. O(mn/K); O(n/K) comm.

8: for j = 1, . . . , n do
9: Align dj with −∇P

j f(w) by (2.11)

10: α← 1, wold ← w
11: while true do
12: Calculate w from wold + αd by (2.12) and

f(w) = ‖w‖1 + C
⊕K

r=1

∑
i∈Jr

ξ(yiw
Txi)

. O(#nnz/K); O(1) comm.
13: if f(w)−f(wold) ≤ γ∇Pf(wold)T (w−wold)
14: break
15: α← αβ

16: Remove 1st column of P and U if needed and

P ←
[
P w −wold

]
UJr,: ←

[
UJr,: XJr,:(w −wold)

]



(a) rcv1 test (b) real-sim (c) yahoojp (d) news20

(e) yahookr (f) url

Figure (I): Comparison of different algorithms with 0.1CBest , CBest , 10CBest , respectively from top to below for
each data set. We show iteration versus the relative difference to the optimal value. Other settings are the same
as in Figure 3



(a) yahoojp (b) rcv1 test (c) epsilon (d) news20

(e) avazu-site (f) url (g) webspam

Figure (II): Comparison of different algorithms by using 32 nodes. Upper: iterations. Lower: running time in
seconds. Other settings are the same as Figure 4.


	Introduction
	Derivation of the Direction Used in LBFGS
	More Details of Limited-memory Common-directions Method
	Line Search in Algorithms for L2-regularized Problems
	More on the Distributed Implementation
	Complexity.

	More Experiments
	More Results by Using Different C Values.
	More Results on Distributed Experiments.


