Supplementary Materials of "Limited-memory Common-directions Method for Distributed L1-regularized Linear Classification"

Wei-Lin Chiang^{*} Yu-Sheng Li[†]

Ching-pei Lee[‡] Chih-Jen Lin[§]

I Introduction

In this document, we present additional details and more experimental results.

II Derivation of the Direction Used in LBFGS

By using only the information from the last m iterations, the definition of B_k in BFGS becomes the following in LBFGS.

(II.1)

$$B_{k} = V_{k-1}^{T} \cdots V_{k-m}^{T} B_{0}^{k} V_{k-m} \cdots V_{k-1}$$

$$+ \rho_{k-m} V_{k-1}^{T} \cdots V_{k-m+1}^{T} \mathbf{s}_{k-m} \mathbf{s}_{k-m}^{T} V_{k-m+1} \cdots V_{k-1}$$

$$+ \cdots + \rho_{k-1} \mathbf{s}_{k-1} \mathbf{s}_{k-1}^{T}.$$

Note that in BFGS, B_0^k is a fixed matrix, but in LBFGS, B_0^k can change with k, provided its eigenvalues are bounded in a positive interval over k. A common choice is

(II.2)
$$B_0^k = \frac{s_{k-1}^T u_{k-1}}{u_{k-1}^T u_{k-1}} I.$$

By expanding (II.1), d_k can be efficiently obtained by $\mathcal{O}(m)$ vector operations as shown in Algorithm II. The overall procedure of LBFGS is summarized in Algorithm I.

III More Details of Limited-memory Common-directions Method

A sketch of the procedure for L1-regularized problems is in Algorithm III.

IV Line Search in Algorithms for L2-regularized Problems

Here we present the trick mentioned in Section 2.3 in the paper. At each line search iteration, we obtain $\boldsymbol{w}^T \boldsymbol{x}_i, \boldsymbol{d}^T \boldsymbol{x}_i, \forall i \text{ first, and then use } \mathcal{O}(l) \text{ cost to calculate}$

$$(\boldsymbol{w} + \alpha \boldsymbol{d})^T \boldsymbol{x}_i = \boldsymbol{w}^T \boldsymbol{x}_i + \alpha \boldsymbol{d}^T \boldsymbol{x}_i, \forall i$$

Algorithm I LBFGS.

1: Given \boldsymbol{w}_0 , integer m > 0, and $\beta, \gamma \in (0, 1)$

- 2: $w \leftarrow w_0$
- 3: for $k = 0, 1, 2, \dots$ do
- 4: Calculate $\nabla f(\boldsymbol{w})$
- 5: Calculate the new direction

$$d \equiv -B\nabla f(\boldsymbol{w}) \approx -\nabla^2 f(\boldsymbol{w})^{-1} \nabla f(\boldsymbol{w})$$

by using information of the previous m iterations (Algorithm II)

Calculate $\nabla f(\boldsymbol{w})^T \boldsymbol{d}$ 6: $\alpha \leftarrow 1, \boldsymbol{w}^{\mathrm{old}} \leftarrow \boldsymbol{w}$ 7: while true do 8: $\boldsymbol{w} \leftarrow \boldsymbol{w}^{\mathrm{old}} + \alpha \boldsymbol{d}$ 9: Calculate the objective value $f(\boldsymbol{w})$ in (2.2) 10: if $f(\boldsymbol{w}) - f(\boldsymbol{w}^{\text{old}}) \leq \gamma \nabla f(\boldsymbol{w}^{\text{old}})^T (\boldsymbol{w} - \boldsymbol{w}^{\text{old}})$ 11: break 12: $\alpha \leftarrow \alpha \beta$ 13:Update P with $\boldsymbol{w} - \boldsymbol{w}^{\text{old}}$ and $\nabla f(\boldsymbol{w}) - \nabla f(\boldsymbol{w}^{\text{old}})$ 14:

Because $\boldsymbol{w}^T \boldsymbol{x}_i$ can be obtained from the previous iteration, $\boldsymbol{d}^T \boldsymbol{x}_i$ is the only $\mathcal{O}(\#\text{nnz})$ operation needed. The line search cost is reduced from

$$\#$$
line-search steps $\times \mathcal{O}(\#$ nnz)

to

$$1 \times \mathcal{O}(\#\text{nnz}) + \#\text{line-search steps} \times \mathcal{O}(l)$$

This trick is not applicable to L1-regularized problems because the new point is no longer $\boldsymbol{w} + \alpha \boldsymbol{d}$.

V More on the Distributed Implementation

V.1 Complexity. The distributed implementation as mentioned in Section 5 is shown in Algorithm VI. Then we discuss the complexity below.

$$\frac{(2 + \#\text{line-search steps}) \times \mathcal{O}(\#\text{nnz}) + \mathcal{O}(lm^2) + \mathcal{O}(mn)}{K} + \mathcal{O}(m^3)$$

VI More Experiments

The data sets used in this section are shown in Table (I).

^{*}National Taiwan University. b02902056@ntu.edu.tw †National Taiwan University. b03902086@ntu.edu.tw

[†]University of Wisconsin-Madison. ching-pei@cs.wisc.edu

[§]National Taiwan University. cjlin@csie.ntu.edu.tw

Algorithm II LBFGS Two-loop recursion.

1: $\boldsymbol{q} \leftarrow -\nabla f(\boldsymbol{w})$ 2: for $i = k - 1, k - 2, \dots, k - m$ do 3: $\alpha_i \leftarrow \boldsymbol{s}_i^T \boldsymbol{q} / \boldsymbol{s}_i^T \boldsymbol{u}_i$ 4: $\boldsymbol{q} \leftarrow \boldsymbol{q} - \alpha_i \boldsymbol{u}_i$ 5: $\boldsymbol{r} \leftarrow (\boldsymbol{s}_{k-1}^T \boldsymbol{u}_{k-1} / \boldsymbol{u}_{k-1}^T \boldsymbol{u}_{k-1}) \boldsymbol{q}$ 6: for $i = k - m, k - m + 1, \dots, k - 1$ do 7: $\beta_i \leftarrow \boldsymbol{u}_i^T \boldsymbol{r} / \boldsymbol{s}_i^T \boldsymbol{u}_i$ 8: $\boldsymbol{r} \leftarrow \boldsymbol{r} + (\alpha_i - \beta_i) \boldsymbol{s}_i$ 9: $\boldsymbol{d} \leftarrow \boldsymbol{r}$

Algorithm III Limited-memory common-directions method for L1-regularized problems.

1: while true do Compute $\nabla^{\mathrm{P}} f(\boldsymbol{w})$ by (2.6) 2: Solve the sub-problem (3.21)3: Let the direction be d = Pt4: for j = 1, ..., n do 5:Align d_j with $-\nabla_j^{\mathrm{P}} f(\boldsymbol{w})$ by (2.11) 6: $\alpha \leftarrow 1, \boldsymbol{w}^{\text{old}} \leftarrow \boldsymbol{w}$ 7: while true do 8: Calculate \boldsymbol{w} from $\boldsymbol{w}^{\text{old}} + \alpha \boldsymbol{d}$ by (2.12) 9: if $f(\boldsymbol{w}) - f(\boldsymbol{w}^{\text{old}}) \leq \gamma \nabla^{\mathrm{P}} f(\boldsymbol{w}^{\text{old}})^{T} (\boldsymbol{w} - \boldsymbol{w}^{\text{old}})$ 10: break 11: $\alpha \leftarrow \alpha \beta$ 12:Update P and XP13:

Table (I): Data statistics.

Data set	#instances	#features	#nonzeros	C_{Best}
real-sim	72,309	20,958	3,709,083	16
rcv1_test	$677,\!399$	47,226	$49,\!556,\!258$	4
news20	19,996	$1,\!355,\!191$	9,097,916	1024
yahoojp	176,203	832,026	$23,\!506,\!415$	2
url	$2,\!396,\!130$	3.231,961	$277,\!058,\!644$	8
yahookr	460,554	$3,\!052,\!939$	$156,\!436,\!656$	4
epsilon	400,000	2,000	800,000,000	0.5
webspam	350,000	$16,\!609,\!143$	$1,\!304,\!697,\!446$	64
KDD2010-b	$19,\!264,\!097$	29,890,096	566, 345, 888	0.5
criteo	$45,\!840,\!617$	1,000,000	1,787,773,969	0.5
avazu-site	$25,\!832,\!830$	999,962	$387,\!492,\!144$	1
kdd2012	$149,\!639,\!105$	$54,\!686,\!452$	$1,\!646,\!030,\!155$	2

VI.1 More Results by Using Different *C* Values. In Figure (I), we present more results with

$$C = \{0.1C_{\text{Best}}, C_{\text{Best}}, 10C_{\text{Best}}\},\$$

where C_{Best} is the value to achieve the highest cross validation accuracy. The results are similar to C_{Best} presented in Section 6, but we observe that NEWTON converges slowly in larger C cases.

VI.2 More Results on Distributed Experiments. In Figure (II), we present more data sets for the distributed experiments. All settings are the same as in Section 6.

Algorithm IV A distributed implementation of OWLQN.

1: for $k = 0, 1, 2, \dots$ do

2: Compute $\nabla^{\mathrm{P}} f(\boldsymbol{w})$ by (2.6) and

$$\nabla L(\boldsymbol{w}) = C \bigoplus_{r=1}^{K} (X_{J_r,:})^T \begin{bmatrix} \vdots \\ \xi'(y_i \boldsymbol{w}^T \boldsymbol{x}_i) \\ \vdots \end{bmatrix}_{i \in J_r}.$$

 $\triangleright \mathcal{O}(\# \operatorname{nnz}/K); \mathcal{O}(n)$ comm.

- 3: Compute the search direction $d_{\bar{J}_r}, r = 1, \ldots, K$ by Algorithm V $\triangleright \mathcal{O}(nm/K); \mathcal{O}(m)$ comm.
- An *allgather* operation to let each node has 4:

$$oldsymbol{d} = egin{bmatrix} oldsymbol{d}_{ar{J}_1} \ dots \ oldsymbol{d}_{ar{J}_K} \end{bmatrix}$$

 $\triangleright \mathcal{O}(n/K)$ comm.

- for j = 1, ..., n do 5:
- Align d_j with $-\nabla_j^{\mathrm{P}} f(\boldsymbol{w})$ by (2.11) 6:
- $\alpha \leftarrow 1, \, \boldsymbol{w}^{\mathrm{old}} \leftarrow \boldsymbol{w}$ 7:
- while true do 8:
- Calculate \boldsymbol{w} from $\boldsymbol{w}^{\mathrm{old}} + \alpha \boldsymbol{d}$ by (2.12) and 9:

$$f(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 + C \bigoplus_{r=1}^K \sum_{i \in J_r} \xi(y_i \boldsymbol{w}^T \boldsymbol{x}_i)$$

- $\alpha \leftarrow \alpha \beta$
- 12:
- $\boldsymbol{s}_k \leftarrow \boldsymbol{w} \boldsymbol{w}^{\mathrm{old}}, \quad \boldsymbol{u}_k \leftarrow \nabla f(\boldsymbol{w}) \nabla f(\boldsymbol{w}^{\mathrm{old}})$ 13:
- Remove 1st column of S and U if needed and 14:

$$S \leftarrow \begin{bmatrix} S & \boldsymbol{s}_k \end{bmatrix}, \quad U \leftarrow \begin{bmatrix} U & \boldsymbol{u}_k \end{bmatrix}$$

15:
$$\rho_k \leftarrow \bigoplus_{r=1}^K (\boldsymbol{u}_k)_{\bar{J}_r}^T (\boldsymbol{s}_k)_{\bar{J}_r} \qquad \triangleright \mathcal{O}(n/K); \mathcal{O}(1)$$

comm.

Algorithm V Distributed OWLQN Two-loop recursion

1: if
$$k = 0$$
 return $d_{\bar{J}_r} \leftarrow -\nabla^{\mathrm{P}}_{\bar{J}_r} f(\boldsymbol{w})$
2: for $r = 1, \ldots, K$ do in parallel
3: $\boldsymbol{q}_{\bar{J}_r} \leftarrow -\nabla^{\mathrm{P}}_{\bar{J}_r} f(\boldsymbol{w}) \qquad \qquad \triangleright \mathcal{O}(n/K)$
4: for $i = k - 1, k - 2, \ldots, k - m$ do
5: Calculate α_i by

$$\alpha_i \leftarrow \frac{\bigoplus_{r=1}^K (\boldsymbol{s}_i)_{\bar{J}_r}^T \boldsymbol{q}_{\bar{J}_r}}{\rho_i}$$

 $\triangleright \mathcal{O}(n/K); \mathcal{O}(1)$ comm.

for $r = 1, \ldots, K$ do in parallel 6: $\triangleright \mathcal{O}(n/K)$ $\boldsymbol{q}_{\bar{J}_r} \leftarrow \boldsymbol{q}_{\bar{J}_r} - \alpha_i(\boldsymbol{u}_i)_{\bar{J}_r}$ 7: 8: Calculate

$$\boldsymbol{u}_{k-1}^T \boldsymbol{u}_{k-1} \leftarrow \bigoplus_{r=1}^K (\boldsymbol{u}_{k-1})_{\bar{J}_r}^T (\boldsymbol{u}_{k-1})_{\bar{J}_r}$$

$$\triangleright \mathcal{O}(n/K); \mathcal{O}(1)$$
 comm.

9: for
$$r = 1, ..., K$$
 do in parallel
10: $r_{\bar{J}_r} \leftarrow \frac{\rho_{k-1}}{u_{k-1}^T u_{k-1}} r_{\bar{J}_r} \qquad \triangleright \mathcal{O}(n/K)$

11: for $i = k - m, k - m + 1, \dots, k - 1$ do Calculate β_i by 12:

$$\beta_i \leftarrow \frac{\bigoplus_{r=1}^K (\boldsymbol{u}_i)_{\bar{J}_r}^T \boldsymbol{r}_{\bar{J}_r}}{\rho_i}$$

 $\triangleright \mathcal{O}(n/K); \mathcal{O}(1)$ comm.

13: for
$$r = 1, ..., K$$
 do in parallel
14: $\mathbf{r}_{\bar{J}_r} \leftarrow \mathbf{r}_{\bar{J}_r} + (\alpha_i - \beta_i)(\mathbf{s}_i)_{\bar{J}_r}$ $\triangleright \mathcal{O}(n/K)$
return $d_{\bar{J}_r} \leftarrow \mathbf{r}_{\bar{J}_r}, r = 1, ..., K$

Algorithm VI Distributed limited-memory commondirections method.

- 1: while true do
- 2: Compute $\nabla^{\mathrm{P}} f(\boldsymbol{w})$ by (2.6) and

$$\nabla L(\boldsymbol{w}) = C \bigoplus_{r=1}^{K} (X_{J_r,:})^T \begin{bmatrix} \vdots \\ \xi'(y_i \boldsymbol{w}^T \boldsymbol{x}_i) \\ \vdots \end{bmatrix}_{i \in J_r}.$$

 $\triangleright \mathcal{O}(\# \operatorname{nnz}/K); \mathcal{O}(n) \text{ comm.}$

3: Calculate

$$X_{J_r,:} \nabla^{\mathrm{P}} f(\boldsymbol{w})$$

 $\triangleright \mathcal{O}(\# \mathrm{nnz}/K)$

4: Remove 1st column of P and U if needed and

$$P_{J_{r},:} \leftarrow \begin{bmatrix} P_{J_{r},:} & \nabla_{J_{r}}^{\mathrm{P}} f(\boldsymbol{w}) \end{bmatrix}$$
$$U_{J_{r},:} \leftarrow \begin{bmatrix} U_{J_{r},:} & X_{J_{r},:} \nabla^{\mathrm{P}} f(\boldsymbol{w}) \end{bmatrix}$$

5: Calculate

$$(XP)^T D_{\boldsymbol{w}}(XP) = \bigoplus_{r=1}^K (U_{J_r,:})^T (D_{\boldsymbol{w}})_{J_r,J_r} U_{J_r,:}$$

$$\triangleright \mathcal{O}(lm^2/K), \mathcal{O}(m^2) \text{ comm.}$$

$$-P^{T}\nabla^{\mathbf{P}}f(\boldsymbol{w}) = -\bigoplus_{r=1}^{K} (P_{\bar{J}_{r},:})^{T}\nabla^{\mathbf{P}}_{\bar{J}_{r}}f(\boldsymbol{w})$$

 $\triangleright \mathcal{O}(mn/K); \mathcal{O}(m)$ comm.

6: Solve

$$((XP)^T D_{\boldsymbol{w}}(XP)) \boldsymbol{t} = -P^T \nabla^{\mathbf{P}} f(\boldsymbol{w})$$
$$\triangleright \ \mathcal{O}(m^3)$$

7: Let the direction be

$$\boldsymbol{d} = P\boldsymbol{t} = \left[P_{\bar{J}_1,:}\boldsymbol{t},\ldots,P_{\bar{J}_K,:}\boldsymbol{t}\right]^T$$

 $\triangleright \mathcal{O}(mn/K); \mathcal{O}(n/K)$ comm.

- 8: **for** j = 1, ..., n **do** 9: Align d_j with $-\nabla_j^{\mathrm{P}} f(\boldsymbol{w})$ by (2.11)
- 10: $\alpha \leftarrow 1, \boldsymbol{w}^{\text{old}} \leftarrow \boldsymbol{w}$
- 10: $\alpha \leftarrow 1, \omega \leftarrow \alpha$ 11: **while** true **do**
- 12: Calculate \boldsymbol{w} from $\boldsymbol{w}^{\text{old}} + \alpha \boldsymbol{d}$ by (2.12) and

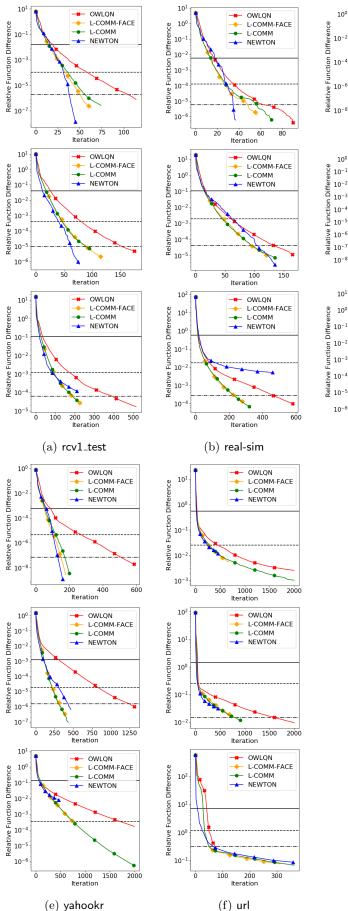
$$f(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 + C \bigoplus_{r=1}^K \sum_{i \in J_r} \xi(y_i \boldsymbol{w}^T \boldsymbol{x}_i)$$

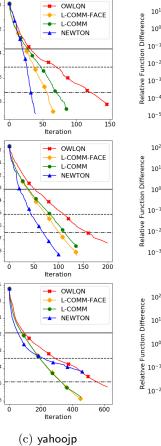
13: **if**
$$f(\boldsymbol{w}) - f(\boldsymbol{w}^{\text{old}}) \leq \gamma \nabla^{\mathrm{P}} f(\boldsymbol{w}^{\text{old}})^{T} (\boldsymbol{w} - \boldsymbol{w}^{\text{old}})$$

14: **break**

- 15: $\alpha \leftarrow \alpha \beta$
- 16: Remove 1st column of P and U if needed and

$$P \leftarrow \begin{bmatrix} P & \boldsymbol{w} - \boldsymbol{w}^{\text{old}} \end{bmatrix}$$
$$U_{J_{r,:}} \leftarrow \begin{bmatrix} U_{J_{r,:}} & X_{J_{r,:}}(\boldsymbol{w} - \boldsymbol{w}^{\text{old}}) \end{bmatrix}$$





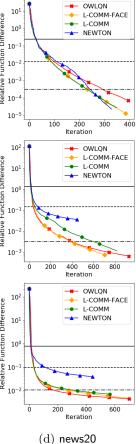


Figure (I): Comparison of different algorithms with $0.1C_{\text{Best}}$, C_{Best} , $10C_{\text{Best}}$, respectively from top to below for each data set. We show iteration versus the relative difference to the optimal value. Other settings are the same as in Figure 3

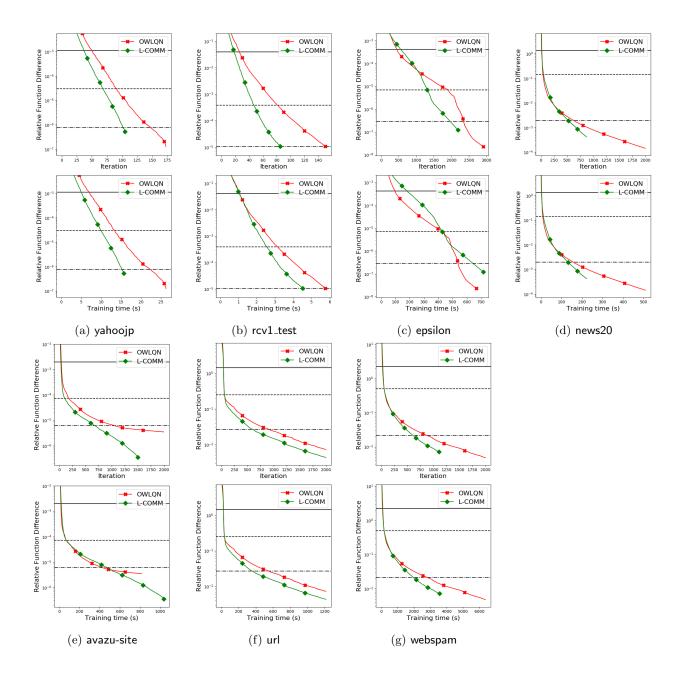


Figure (II): Comparison of different algorithms by using 32 nodes. Upper: iterations. Lower: running time in seconds. Other settings are the same as Figure 4.