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ABSTRACT 

 
In this paper, a novel structure is proposed to tackle multi-
class classification problem. For a K-class classification 
task, an array of K optimal pairwise coupling classifier 
(O-PWC) is constructed, each of which is the most 
reliable and optimal for the corresponding class in the 
sense of cross entropy or square error. The final decision 
will be got through combining the results of these K O-
PWCs. The accuracy rate is improved while the 
computational cost will not increase too much. This 
algorithm is applied to face recognition on Cambridge 
ORL face database, the experimental results reveal our 
method is effective and efficient. 

 

1. INTRODUCTION 
 
In many real world applications, such as face recognition, 
text categorization, handwritten digital recognition, and so 
on, a multi-class classification problem has to be solved. 
One method is to establish a unified hyperplane to 
discriminate all classes at once directly [8]. More popular 
and applicable method is to reduce a multi-class problem 
to a set of binary classification problems rather than to 
construct a decision function for all classes [2]. 

There are different strategies to decompose a multi-
class problem into a number of binary classification 
problems. For a K-class classification problem, one 
method is to use one-against-rest [2] principle to 
construct K binary classifiers. Each binary classifier 
distinguishes one class from all the other classes. The 
other is so called one-against-one [7]. This method 
constructs all possible K(K-1)/2 two-class classifiers, each 
of which is used to discriminate two of the K classes. In 
this paper, we only consider the later method. 
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Different schemes are used to combine the results of 
these binary classifiers. MaxVoting strategy considers the 
output of each classifier as binary decision and selects the 
class that wins maximum votes. DAGSVM [6] constructs 
a Direct Acyclic Graph. Both of these methods didn’t 
consider the case in which the binary classifiers outputs a 
score whose magnitude is a measure of confidence. In 
Pairwise Coupling (in short, PWC) [10], each of the 
binary classifiers output a posterior probability, so called 
pairwise probability, for a given testing pattern. And then 
PWC couples these pairwise probabilities into a common 
set of posterior probabilities. This method is used widely 
in many fields[3][12]. Error Correct Output Codes 
(ECOC)[9] allows a correct classification even if a subset 
of binary classifiers gives wrong classification results. 

However, PWC method has some drawbacks [3][4]. 
When a sample x

r  is classified by one of the K(K-1)/2 
classifiers, and at the same time, x

r  doesn’t belong to both 
of the two involved classes of this classifier, the 
probabilistic measures of x

r  to the two classes are 
meaningless and maybe damage the coupling output of 
PWC. To tackle the problem, PWC-CC method is 
proposed in [4]. For each pairwise classifier separating 
class ci from class cj, an additional classifier separating the 
two classes from the other classes will be trained. This 
will lead to the increment of the computational cost. 

In this paper, optimal PWC (in short, O-PWC) is 
introduced to overcome the problem encountered by PWC. 
For a K-class classification problem, an array of K O-
PWCs are constructed, each of which is optimal to the 
corresponding class in the sense of cross entropy or 
square error.  Classifying a pattern equals to find the class 
label which corresponds to the minimal cross entropy or 
square error. Improved performance can be achieved 
while the computational cost will not increase too much. 

The rest of the paper is organized as follows: In 
section 2, we will briefly introduce the conventional PWC 
method. In section 3, our algorithm is described in detail. 
Experimental results and conclusion will be given in 
section 4 and 5 respectively. 
 



2. PAIRWISE COUPLING METHOD 
 
Given a set of K classes {ci}, the probability of x

r  
belonging to class ci, given x

r  is in either class ci or cj, can 
be written as a pairwise probability:  

),|( jiij cicxxcpr ∪∈=
rr , ij ≠ . 

Going through all K(K-1)/2 binary classifiers, a pairwise 
probability matrix, can be produced.  

To couple the pairwise probability matrix into a 
common set of probabilities Pi, Haste and Tibshirani in 
[10] proposed Pairwise Coupling method. They 
introduced a new set of auxiliary variables: 
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and found Pi’s such that the corresponding ijµ ’s are in 
some sense “close” to the observed ijr ’s. The Kullback-
Leibler divergence between ijµ  and ijr : 
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is selected as the closeness measure in [10]. Minimizing 
this function can find Pi’s. An iterative procedure is 
proposed to solve such constrained minimization problem: 
step 1. Initialize iP , and compute corresponding ijµ ; 
step 2. Repeat until convergence: 
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renormalize the iP , and recomputed the ijµ . 

step 3. ∑← iPPP /  

For simplicity, the weights are assume equal, that is, 
1=ijn  for all i, j. A simple non-iterative estimate of P can 

be obtained simply as: 
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Let the posterior probabilities of x
r  be ),()( 1 KPPxP L
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The final decision rule is: )]([maxarg)( xPxd ii
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3. METHODOLOGY 
 
In PWC, the weight matrix {nij} in Eqn.(1) can be re-
written as the follows:  
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where, jiKjiWW jiij ≠== ,,,1,, L . This weight matrix 
reflects the influence of each pairwise classifier to the 
final decision for a given pattern x

r . In PWC, the weights 
are all assumed to be 1, which means that all binary 
classifiers’ contributions to the final decision are the same. 
In fact, given a testing pattern ji ccx ∪∉

r , the pairwise 
probability rij is absolutely irrelevant to x

r  because the 
corresponding binary classifier which is used to 
discriminate class ci and cj has not been trained with data 
from the true class. Consequently, using it to find P

r
 is 

very likely to damage the result of the calculation. 
Accurately, not all binary classifiers are useful and 
relevant to the final decision for a given pattern, some of 
which are meaningless, or even harmful. However we 
have no idea about the information because this is what 
we aim at determining. 
 
3.1. Optimal PWC classifier for Each Class 
 
To overcome the problem mentioned above, we introduce 
the Optimal PWC. Before that, we will present such a fact: 
Suppose the pairwise probabilities matrix is known, given 
a weight matrix, we can use the conventional coupling 
method (see the iterative procedure in Section 2) to 
construct a unique PWC classifier.  
 
Definition: The optimal weight matrix for class ic  is: 

{ }qp
i WW ,= , 

 which satisfies: 

qpKqp
otherwiseW

iqoripifW

qp

qp
≠=







=

===
,,,2,1,,

,0

,1

,

,
L  

Using Wi, a PWC classifier can be constructed using the 
iterative procedure in Section 2, which is called Optimal 
PWC  for ci (in short, O-PWC). 
 

For example, considering a 5-class classification 
problem, the optimal weight matrix for class 2c  and 4c  
can be represented as the follows respectively: 
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It means that, given a pattern icx ∈
r , only the binary 

classifiers whose one of the two involved classes is ci are 
considered, while other binary classifiers are all ignored. 
Hence, all pairwise probabilities in O-PWCi are all 
relevant to class ci. 

Given a pattern x
r , the output of O-PWCi can be 

represented as a probability vector: ( ) ( )i
K

iii PPPxP ,,, 21 L
rr
= , 



{ }Ki ,,2,1 L∈ . Each of its components represents the 
probability of x

r  belonging to the respective class. 
 
3.2. Properties of O-PWC 
 
In this sub-section, we will investigate the properties of 
O-PWC in two scenarios: 1) when a given pattern is 
presented to different O-PWCs; 2) when samples from 
different classes are presented to the same O-PWC. 
Fig.1(upper) and Fig.1(bottom) show the two scenarios, 
respectively. 

Given icx ∈
r , the output of O-PWCi, iP

r
, will be an 

“regular” probability vector where its i-th component i
iP  

is the largest and very remarkable, while the other 
components will be small and similar. However, when x

r  
is presented to O-PWCj, ij ≠ , the output jP

r
 does not 

have such properties and all of its components are 
“irregular”.  

An approximate and intuitive explanation can be 
given as the follows: Given an optimal weight matrix Wi, 
a new pairwise probability matrix can be constructed: 

PPMWPPM ii ⋅= . If icx ∈
r , then the values in i-th row of 

PPMi are all bigger probabilities, while the other rows 
contains only one value, each of which is very small. 
After using Eqn.(2), the i-th component will be 
remarkable and the other components of iP

r
 will be small 

and similar comparing with i-th component. 
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Fig. 1. Properties of O-PWC. The upper shows the outputs of O-
PWC2, O-PWC4 and O-PWC6 for a face image for person #4 
(class c4). The bottom shows the output of O-PWC2 for two 
faces from class c2 and c4, respectively. 

For a K-class classification problem, we assume the 
“true” probability for each class can be represented as nT

r
, 

},,2,1{ Kn L∈ . Its component will be defined to be 1 if the 
label of x

r  is n and 0 otherwise. For example, considering 
a 5-class classification problem, the “true” probabilities 
for c2 can be described as: ( )0,0,0,1,02 =T

r
. Similarly, the 

“true” probabilities for c4 will be: ( )0,1,0,0,04 =T
r

.  
Based on this observations, we can see that the O-

PWCi will produce a “regular” probability vector which is 
closest to iT

r
 for x

r  if and only if icx∈
r .In this paper, the 

following two metrics: cross entropy and square error, are 
used to assess the extent of “closeness”: 
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where { }Kn ,,2,1 L∈ .  
Based on the above analysis and observation, given a 

pattern icx ∈
r , the cross entropy or square error between 

iT
r

 and ( )xPi rr
 will be minimal. So O-PWCi can be 

regarded as the optimal classifier for class ci in the sense 
of the cross entropy or square error. 
 
3.3. Classification Using O-PWCs 
 
For a K-class classification problem, we propose to use an 
array of K O-PWCs to perform the classification task. The 
systemic diagram is shown in Fig.2. 
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Fig. 2. The system diagram of combination of K O-PWCs. 

There are K channels in Fig.2, each of which will use 
the respective O-PWC to produce a probability vector for 
a given pattern x

r . For a K-class problem, there will be K 
probability vector outputs: 

( ){ }xPm rr
, Km ,,2,1 L=  

and at the same time the i-th channel is corresponding to 
class  ci and has a “true” probability vector iT

r
. 



For a given sample x
r , an array of cross entropy or 

square error for each channel will be computed:  
( ){ }iii TPEvlEvl

rr
,= , Ki ,,2,1 L=  

where the metric function ( )ii TPEvl
rr

,  can be square error 
(See Eqn.(3)) or cross entropy (See Eqn.(4)).  

Based on the above analysis and observation, if icx ∈
r , 

then the output of O-PWCi , iP
r

, will be “regular” and be 
the closest to its “true” probability vector iT

r
, the 

corresponding iEvl  will be minimal. However the outputs 
of other O-PWCs for icx∈

r  will be “irregular”. 
Classifying x

r  equals to find the class label corresponding 
to the “regular” output.  

The final decision can be represented as:  
{ })(minarg)( xEvlxd i

i
rr

=  
 
3.4. Performance Evaluation 
 
Like MaxVoting and conventional PWC, our method need 
to evaluate K(K-1)/2 pairwise binary classifiers for a 
given pattern x

r  which is time-consumed. Our method still 
needs to perform K coupling processes which are very 
fast. Hence, comparing with conventional PWC, our 
method does not increase computational cost too much. 
 
3.5. Construction of pairwise probabilities matrix  
Using SVM 
 
All the discussion above supposes the existence of a 
pairwise probabilities matrix. In fact, pairwise probability 
matrix can be constructed using any binary classifier 
which can produce probabilistic outputs. SVM is used in 
this paper as the pairwise binary classifier due to its better 
generalization ability [11]. However standard SVM can 
not provide a calibrated poster probability. J.Platt in [5] 

proposed a “SVM+Sigmoid” method to map the outputs 
of a binary SVM to posterior probabilities. 

Given a two class classification problem, J.Platt 
argues that the class-conditional densities between the 
margins are apparently exponential and can be represented 
using a parametric form of a sigmoid: 
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The parameters A and B are found by minimizing the 
cross entropy of the training data: 
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The “SVM+Sigmoid” model leaves SVM unchanged, and 
is similar to Logistic Regression. In this paper, this model 
is adopted to map SVM outputs to posterior probabilities. 

For a K-class problem, K(K-1)/2 sigmoid models will 
be trained. Going through all the pairwise binary SVMs, 
we can construct a pairwise probability matrix. 
 

4. EXPERIMENTS 
 
We illustrate our algorithm on the ORL face database, 
which consists of 400 images of 40 individuals, 
containing quite a high degree of variability in expression, 
pose and facial details. Some samples from this database 
are depicted in Fig.3. 
 

 
Fig. 3. Four individuals (each in one row) in the ORL. There are 
10 images for each person. 

In our face recognition experiments, feature extraction 
phase can be performed as: we perform wavelet transform 
twice on the image to get the low frequency components 
and then whiten in order to make each vector 0-mean and 
1-variance. Our extracted feature is 168 dimensions. We 
select 200 samples (5 for each individual) randomly as the 
training set. The remaining 200 samples are used as the 
testing set. Training phase includes two parts in this paper, 
one is to train 40*(40-1)/2=780 binary SVM classifiers, 
the other is to fit 780 sigmoid models to estimate the 
posterior probability of each binary SVM. In this paper, 
LIBSVM [1] is used to train binary SVMs. We adopt 

3.0=σ  and C=10 (sigmoid kernel) to train all binary 
SVM classifiers. 

Table 1 shows the comparison of different 
recognition methods on ORL database: 

Table 1. Recognition accuracy rate comparation 

Method MaxVoting PWC 
O-PWC 
(Cross 

Entropy) 

O-PWC
(Square 
Error) 

Rate 94% 95.13% 96.79% 98.11%
 
It can be observed that conventional PWC method is 
superior to MaxVoting, and O-PWC is superior to the 
other two in term of accuracy rate. At the same time, we 
can see that, the square error metric is better than the cross 
entropy metric. 

       
(a)                       (e) 



0 5 10 15 20 25 30 35 40
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Person Identity / Class No.

P
ob

ab
ili

tie
s 

E
st

im
at

io
n 

of
 O

−
P

W
C

−
13

 fo
r 

cl
as

s 
13

Face 1
Face 2
Face 3
Face 4
Face 5

  0 5 10 15 20 25 30 35 40
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Person Identity / Class No.

P
ob

ab
ili

tie
s 

E
st

im
at

io
n 

of
 O

−
P

W
C

−
36

 fo
r 

cl
as

s 
36

Face 1
Face 2
Face 3
Face 4
Face 5

 
(b)                       (f) 
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(c)                       (g) 
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(d)                       (h) 

Fig. 4.  (a) are the five face images from person #13; (b) are the 
outputs of O-PWC13  for the five images in (a); (c) and (d) are 
the cross entropy and square error of the 40 channels for the five 
images in (a). Similarly, (e)-(h) are the corresponding results for 
the five face images shown in (b). 

Fig.4 shows some results when a pattern x
r  is 

presented to the framework shown in Fig.2: 1) the output 
of O-PWC13  for class 13, 13P

r
, is the closest to the “true” 

probabilities, 13T
r

; 2) The cross entropy or square error 
between 13P

r
 and 13T

r
, that is, the cross entropy of channel 

13, will be minimal; 3) The square error metric is superior 
to the cross entropy metric. Hence, we can classify these 
five faces into class 13 correctly. Similar conclusion can 
be got for 5 face images from person #36. What’s more, 
from Fig.4 we can see that, because the degree of 
variability in (e) is higher than that in (a), there are more 
variance in (f)-(h) than that in (b)-(d) for different face 
images from the same class. 
 

5. CONCLUSION 
 
This paper proposes an array of O-PWCs to tackle multi-
class classification problems.  In fact, the optimal weight 
matrix provides a method to select binary classifiers 
which are relevant to class ci. O-PWCi only considers 
these binary classifiers. Hence it is the optimal for ci in the 
sense of cross entropy of square error. The classification 

accuracy rate can be improved while the computational 
cost will not increase too much. 
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