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Abstract- Sound source localization is an important function in 
robot audition. The existing works perform sound source 
localization using static microphone arrays. This work proposes a 
framework that simultaneously localizes the mobile robot and 
multiple sound sources using a microphone array on the robot. 
First, an eigenstructure-based generalized cross correlation 
method for estimating time delays between microphones under 
multi-source environments is described. A method to compute the 
far field source directions as well as the speed of sound using the 
estimated time delays is proposed. In addition, the correctness of 
the sound speed estimate is utilized to eliminate spurious sources, 
which greatly enhances the robustness of sound source detection. 
The arrival angles of the detected sound sources are used as 
observations in a bearings-only SLAM procedure. As the source 
signals are not persistent and there is no identification of the 
signal content, data association is unknown which is solved using 
FastSLAM. The experimental results demonstrate the 
effectiveness of the proposed approaches. 

I. INTRODUCTION

    Audition system is a very important feature for intelligent 
robot. The fundamental requirement of this system is allowing 
a robot to interact with humans through speech dialog. Under 
this requirement there have been several research issues 
currently active in the Robotics community. These issues 
include speaker localization [1][5], speech separation and 
enhancement [2], speech recognition and natural dialog [3], 
and speaker identification and multi-modal interaction [4] etc. 
Among them, speaker localization using either biological 
hearing principle [5] or microphone array [1] has drawn lots of 
attentions for many years [6].  

The underlying principle to localize sound source using 
microphone array is based on time difference of arrival (TDOA) 
among spatially distributed microphones. For distance 
localization, the method of triangulation is used and the 
accuracy depends on the ratio between the microphone spacing 
and the distance. Since the array spacing on a mobile robot is 
usually small comparing with the distance to the source, it is 
unlikely to obtain accurate distance information [7]. Hence, 
most of the sound source localization research on mobile robot 
emphasized on detecting the source directions. Almost no work 
tried to solve the problem of localizing the robot and multiple 
sound sources simultaneously. Mobility is a unique advantage 
of the robot over a stationary microphone array. When moving 

in space, the robot effectively increases the array spacing and it 
is possible to compute the source distance by using the source 
direction information only. This is equivalent to the standard 
bearing only localization problem [8]. But it is more 
complicated when dealing with multiple sources as the signals 
are mixed together in the array measurement. Secondly, the 
sound source signals may not be persistent all the time. Unless 
the contents of source signals can be clearly identified, there 
will be source association problem. The data association 
becomes more difficult for non-persistent and moving sources. 
Although other types of sensors such as vision can be 
incorporated [4][12], exploring the technological boundary of 
localization using sound measurement alone is still very 
important. For example, occlusion or under a sudden lighting 
variation could make visual recognition fail easily. 

 The first challenge of sound source localization is the 
robustness of source detection, especially under multi-source 
environment with reverberation. Generalized cross correlation 
(GCC) [9] are one of the major methods discussed for robot 
localization application [10]. For multiple sources, MUSIC [11] 
is the most popular methods for eliminating the coherence 
problem and it is also applied to the robot audition system [12]. 
Walworth et. al. [13] proposed a linear equation formulation 
for the estimation of the three-dimensional (3-D) position of a 
wave source based on the time delay values. Valin et. al. [1] 
given a simple solution for the linear equation in [13] based on 
the far field assumption. Yao et. al. [14] presented a source 
linear equation similar with [13] to estimate the source location 
and velocity by using least square method. This paper presents 
a method of computing arrival delays of multiple sources by 
combining the idea of MUSIC and GCC. Further, the source 
linear equation of [14] is modified for direction estimate of far 
field sources. The distinct advantage of the method is no 
information about the number of sources and speed of sound 
are needed. In fact, the speed of sound is computed for each 
possible source and the value is used to check if it is a valid 
one. This greatly enhances the robustness of source detection. 

The source directions obtained from the proposed method 
are served as the observation data for the bearing only 
localization framework. Since there is no additional 
information about the content of the source signals, the 
observation data sequence require association. The problem is 
solved by using the FastSLAM algorithm [15] where incorrect 



associations of sound sources tend to possess inconsistent 
positions. Experiments were conducted using an 8-channel 
microphone array on a mobile robot. It is shown that the 
overall system effectively localize the robot and sound sources 
in a room environment. 

II. SOUND SOURCE DIRECTION ESTIMATION

In this section, a method of estimating directions of multiple 
unknown sound sources using microphone array is introduced 
[]. The novelty of this method is the ability to separate source 
arrival angles simultaneously without knowing the speed of 
sound. Further, the estimated speed of sound associated with 
each source is used to verify the existence of such a source. 
This is necessary since there is no information of the number 
of sources in the measurement.  

A. Near Field Influence Factor and Field Distance Ratio 

  The work in [14] provides a close form solution for 
estimating the source locations and sound propagation speed 
using multiple microphones. The accuracy depends on the 
aperture of the microphone geometry as well as the distance to 
the source. In our case, microphones are installed only on the 
robot. This makes the aperture relatively small comparing with 
the source distance in most cases. As a result, it is necessary to 
consider the far field scenario. Let source location be 

[ ]s s s sx y z=r , the i-th sensor locations 
ir  and the relative 

time delays, 
ji tt − , between the i-th sensor and j-th sensor. The 

original equation of the delay relation (from (15) of [14]) is,  
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sr̂  represents the unit vector in the source direction and 
iρ

means the ratio of the array size (aperture) to the distance 
between the array and source, i.e., for far field sources, 1<<iρ . 

Substituting (2) to (1), we have, 
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The term ( )0iv t t−   means the difference between the sound 

source to the i-th and the 0-th microphones. Let the difference 
be di, i.e., 

( )0i i sd v t t= − = − − −i s 0r r r r  (4) 

Equation (3) can be re-written as, 
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It is straightforward to see that
if ≥ 0 since 

id ≤ −i 0r r (7) 

Also, 
if  achieves it maximum of / v−i 0r r  when 

id = 0 (i.e., 

when the source is located along the line passing through the 
mid point of and perpendicular to the segment connecting 
microphone i and 0). This also means that 

if  has the order of 

magnitude less than or equal to the vector ( ) / v−i 0r r . 

Therefore, from (5), it is clear that for far field sources 
( 1<<iρ ), the delay relation approaches, 
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Equation (8) can also be derived from plane wave propagation 
perspective [1]. But the derivation above can clearly explain 
the far field term and near field influence of the delay relation 
on the left hand side of (5). We define 

iρ  as the field distance 

ratio and 
if  the near field influence factor for their roles in the 

source localization using array of sensors.  

B. Least Square Solutions 

For an array of M sensors, (8) becomes a system of linear 
equations as,  

bw =ssA                                                                                  (9) 

where 
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It is therefore easy to estimate the speed of sound: 

( ) bw ΤΤ
==

s

1-

ss AAA

11

s

v                                                       (13) 

And the sound source direction can be given by: 
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As a result, the bearings of the source to the sensors can be 
computed by, 

[ ]ˆ cos sin sin sin coss S S S S Sθ φ θ φ φ=r                                (15) 
where 

Sθ and 
Sφ  are azimuth and elevation angle respectively. 

It is straightforward to verify that As reduces rank if the vectors 
constructed by sensor pairs do not span the 3-D space (i.e., 
planar array), meaning the delay relation is satisfied by more 
than one source directions. Secondly, (8) is actually an 



approximation by considering plane wave propagation. Please 
refer to [15] for detailed analysis of the approximation errors 
and array geometry issues.  
    The solutions of (13) and (14) are useful only when the 
delay among microphones can be estimated within certain 
accuracy. For multiple sources, the estimation becomes more 
difficult as the signals are mixed together in the measurements. 
In next section, an eigenstructure-based generalized cross-
correlation (GCC) method is presented to cope with this issue. 

C. Delay Estimation of Multiple Sources 

Consider an array with M  microphones on a mobile robot. 
The received signal of the m-th microphone which contains 
d sources can be described by SFT (Short-term Fourier 
Transform) as: 
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where amp is the amplitude from the p-th sound source to the 
m-th microphone, τmp is the associated delay, ( , )m fN kω  is the 

interference, ωf is the frequency band and k is the frame 
number. Rewrite (1) in matrix form: 
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The received signal correlation matrix with eigenvalue 
decomposition can be described as: 
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where )( fi ωλ  and )( fi ωV are eigenvalues and corresponding 

eigenvectors with )()()( fMff ωλωλωλ ≥≥≥ �21
and )( fω1V

is the principal component vector of the sound source at 
frequency 

fω  which is defined as: 
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The principal component vector contains the directional 
information of the principal sound sources at each frequency. 
As a result, the principal component matrix at each frequency 
can be established as: 
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The f-th column can be considered as the distribution vector of 

the received signal on M microphones at frequency fω . 

Hence, the eigenstructure-based GCC function between the i-th 
and j-th microphone can be represented as: 
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The time delay can be estimated by finding the peaks of the 
eigenstructure-based GCC function: 
ˆ arg max ( )

i jES GCC x xR
τ

τ τ− =             (22) 

D. Direction Estimation for Multiple Sources 

For multiple sources, there will be multiple peaks in the 
GCC function of (21) for each pair of microphones and 
multiple delays are obtained at each SFT frame. The question 
is how to combine these delays among microphone pairs to 
form the vector b of (12). Denote τjk as the k-th delay of the 
microphone pair (j, 0), k = 1~qj where qj is the total number of 
delays (peaks) of this pair. Note that qj maybe different for 
different pairs (depending on the threshold level of the peak 
value). For M microphones, there will be (q1×q2···×qM-1) 
number of possible combinations of the vector b. However, 
since the minimum number of microphone pairs to solve (9) is 
3, we can sort out the combination by starting from 3 pairs and 
iteratively adding additional pair. Without loss of generality, 
assume the indices of microphone pairs are arranged in the 
order such that q1≥q2≥q3≥q4···≥qM-1. Then the delay vector of 
each source can be found by minimizing the error between the 
associated sound speed estimation and the nominal one (e.g., 
340 m/sec). Specifically, a set of possible sound sources can be 
found as the following: 
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T

mn l m nτ τ τ=b  and v  the nominal speed of sound. Note 

that the error bound e  is imposed so that some of the delay 
vectors with unreasonable speed of sound can be eliminated. 
This is the advantage of the proposed method comparing with 
classical methods like MUSIC to screen out sources which are 
not real (e.g., electronic noise). Secondly, the possible number 
of sound sources can be greater than q1 since multiple sources 
could result in the same delay for a microphone pair. Next, the 
delays of microphone pair 4 can be added similarly until the 
pair M-1. The process is quite straightforward and the 



explanation is omitted here. Laboratory experience showed that 
a correct number of sources can be obtained repeatedly for the 
error bound 15 /e m s=  [15]. 
     The resulting delay vectors computed through the process 
described above can be used to obtain the source directions by 
(14) and (15).  

Fig. 1. The robot position posterior estimation 

III. LOCALIZATION OF SOURCES AND ROBOT

Simultaneous Localization and Mapping (SLAM) 
problem is the procedure of recognizing a set of feature 
landmarks 

1 1 2 2( , , , , , , )d dμ μ μΣ Σ Σ�  and localizing the sensor 

odometer ( , , )r r rX x y θ= with respect to the landmark set. A 
microphone array platform carried by a two-wheel robot was 
used in this paper to perform the localization of the robot and 
landmarks. According to section II, the microphone array is 
capable of recognizing unknown number of sound source as 
the feature points and obtaining associated angle of arrival. The 
angles are considered as the bearing measurements and this 
becomes a standard bearing-only SLAM problem [8]. Since the 
localization problem of this paper is no different from others, 
the FastSLAM algorithm [16] is adopted here. FastSLAM 
estimate the robot path using a particle filter and the map 
feature locations are estimated using EKF. Each particle 
possesses its own set of EKFs for all feature point. Particles in 
FastSLAM are denoted as 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
1, 1, 2, 2, , ,( , , , , , , , )k k k k k k k k

t t t t t t d t d tY X μ μ μ= Σ Σ Σ�          (26) 

where [ ]k is the index of the particle; [ ]
,

k
r tX is the path estimate 

of the robot, and [ ]
,

k
p tμ and [ ]

,
k

p tΣ  are the mean and covariance 

of the Gaussian distribution indicating the p-th landmark 
location. The algorithm can be separated into the following 
three steps: 

A. Sampling New Pose according to path posterior 

For each particle at time t, the control input tu  is used to 
estimate the [ ]k

tY  from [ ]
1

k
tY −

. It samples the new robot position 
[ ]k

tX  according to the posterior, 
[ ] [ ] [ ]

1( | , )k k k
t t t tX p X X u−∼                                                                  (27) 

where [ ]
1

k
tX −

 is the posterior estimate of robot location at time 
t-1. The sampling step could be seen graphically in Fig. 1 

B. Use the observation to update the feature estimation 

At this step, the posterior of the feature point is estimated. The 
update is stated here with the normalizer η  denoted by  

1: 1: 1: 1 1: 1( | , ) ( | , ) ( | , )t t t t t tp m X Z p Z X m p m X Zη − −=           (28) 

where m is the landmark and 
:i jZ is the observation from time 

step i to j. The probability distribution of landmarks 

1: 1 1: 1( | , )t tp m X Z− −
 at time t-1 is represented by a Gaussian 

distribution with mean [ ]
, 1
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p tμ −

 and covariance [ ]
, 1

k
p t −Σ . For the 

new estimation, FastSLAM linearizes the perceptual model 
( | , )t tp Z X m in the same way as EKF. The measurement 

function h could be approximated by a Taylor expansion: 
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Here the derivative h’ is taken with respect to the feature m. 
The approximation is tangent to h at [ ]k

tX  and [ ]
1

k
tμ −

. The new 

mean and covariance could be obtained using the standard 
EKF measurement update. 
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After repeating step A. and B. M times, the temporary set of M
particles is created. 

C. Resampling 

In the final step, FastSLAM resample the set of the M particles. 
First we’ll calculate the importance factor of each particle. The 
factor is given by 

[ ] [ ] 1 [ ]11
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with the covariance 
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which means the closer the particle’s estimation is to the 
observation, the more important it is. After all the weighting is 
computed, the real probability distribution is described by 
these weighting.  

One of the key features of FastSLAM is that as long as s 
mall subset if the particles are based on the correct association, 
data association is not as fatal as in EKF approaches. Particles 
with incorrect data association tend to possess inconsistent 
feature position, which increase the probability that will be 
sampled away during the resample phase of the algorithm.  

IV. EXPERIMENTAL RESULTS

An 8-channel microphone array is constructed using 
specially-made digital microphones. The digital microphone 
integrates an electret condenser microphone cores, analog 
output amplifier, and sigma-delta modulator on a single chip 
[15]. The digital bit-stream transmission achieves a minimum 
interference comparing with conventional analog microphone 
signals. The microphone array topology and the mobile robot 
for the experiment is shown in Fig. 2. Note that it is a 3-
dimensional microphone array which is able to estimate the 



sound source elevation angle. In this experiment, however, this 
angle is ignored since the localization concerns with 2-D 
locations of the robot and the sound sources. 

Fig. 2. Digital microphone array mounted on the robot  

The room size is 4750 mm × 3600 mm and height of 3600 
mm approximately. Let the origin be at 1500 mm from two 
sides of the wall (where the robot starts to move). Three 
loudspeakers at the height of 400 mm are installed at  
(-900,2380), (1500,2350) and (3320,625). Female and male 
voices are broadcasted simultaneously through these speakers 
to simulate the sources. These speech signals contain silence 
periods so the number of active sources varies in no particular 
order. The microphone array sampling rate is 16 KHz and each 
SFT frame contains 512 samples with overlapping 256 samples. 
The sound arrival angles are computed after collecting 20 
frames which is about 3 times per second. The robot stops at 
10 waypoints to record the acoustic data. Method in section II 
is used to calculate the sound sources arrival angles. Without 
knowing the data association of each calculated angle, the 
FastSLAM algorithm of unknown data association in section 
III to estimate the locations of robot and sound sources.  

Fig. 3 A typical eigen-structure based GCC values 

Fig. 3 shows a typical result of the eigen-structure based 
GCC value (Eq.(21)) from a pair of microphones as a function 
of delay. The graph exhibits several peaks which indicate 
existence of multiple sources. The threshold for valid delays in 
this paper is set as the 90% level of the largest peak (e.g., the 
red line in Fig. 3). Different microphone pairs may result in 
different number of possible sources. The procedure of section 
II.D is implemented to sources with unreasonable estimates of 
sound speed. For this experiment, the range of sound speed is 
set as 300 m/s to 400 m/s. This range will give more sound 
source candidates to test if the particle filter is able to eliminate 
spurious sources. 
    The path recording result is shown in Fig 4, where the blue 
dots stand for the ground truth measured by the laser range 
finder. The path recorded by the mobile platform (plotted in 
red) is considered as the input of the particle filter. There will 
be a biasing error between the encoder data and the real ground 
truth. The yellow dot is the position estimation of the robot 
performed by FastSLAM. The estimated path is more likely to 
follow the path of the encoder data, since it was considered as 
the real input of the filter. The clustering result of the yellow 
dots is because of the robot will stop at these points to perform 
the method in section II. It’ll stop for around 5 second to 
ensure the calculation of the sound emitting angle is stable. 
Also, the filter will perform only the predict phase while it is 
moving between the clusters. The update phase is performed at 
the waypoint. 

Fig. 4. Experimental result of the FastSLAM  

Another important effect of FastSLAM is that it 
simultaneously estimates the sound source location using EKF. 
The green stars in Fig 3 are the estimated mean of the three 
sound landmarks. And the ground truth of the sound source is 
pointed by the black arrows. Although the path estimation 
contains biasing due to the encoder error, the landmark 
estimation is reasonable. Table 1 shows the sound source 
locations estimates from FastSLAM and the mean locations 
computed from the laser range finder’s data.  



Table 1 The localization result of the sound source
 Laser Range 

Data (mm) 
EKF estimate 

(mm) 
Distance error 

(mm) 
Source 1 2980.0 2993.3 13.3 (0.45%) 
Source 2 1747.0 1677.1 -69.9 (-4%) 
Source 3 1820.0 1775.5 -44.5 (-2.4%)

Table 2 The bearing result of the sound source 
 Laser Bearing 

Data (°) 
EKF estimate 

(°) 
Distance 
error (°) 

Source 1 143.4 140.4 -3 
Source 2 90.5 100.3 9.8 
Source 3 0.0 -9.7 -9.7 

    A very important benefit of FastSLAM is that it will filter 
out unreasonable data in the resample state. Once the data 
(particle) is associated with the wrong landmark index, the 
importance factor of that particle will shrink down and cause 
particle elimination. So, the FastSLAM algorithm is robust to 
unknown data association. 

V. CONCLUSION

    This work estimate unknown number of sound sources using 
eigenstructure-based generalized cross correlation. And it is 
also able to estimate the speed of sound as well as the far field 
source direction. While the emitting angles are estimated, they 
are considered as the observation of a particle filter. The 
FastSLAM algorithm is able to solve the bearing-only SLAM 
problem for unknown data association.  
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